Suppr超能文献

将基因组工具转化为拉曼光谱分析,能够实现高维组织的分子分辨率特征分析。

Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution.

机构信息

Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.

UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.

出版信息

Nat Commun. 2023 Sep 19;14(1):5799. doi: 10.1038/s41467-023-41417-0.

Abstract

Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, leaving a gap of potentially highly valuable information. Raman microspectroscopy provides untargeted spatiomolecular information at high resolution, capable of filling this gap. In this study we demonstrate spatially resolved Raman "spectromics" to reveal homogeneity, heterogeneity and dynamics of cell matrix on molecular levels by repurposing state-of-the-art bioinformatic analysis tools commonly used for transcriptomic analyses. By exploring sections of murine myocardial infarction and cardiac hypertrophy, we identify myocardial subclusters when spatially approaching the pathology, and define the surrounding metabolic and cellular (immune-) landscape. Our innovative, label-free, non-invasive "spectromics" approach could therefore open perspectives for a profound characterization of histological samples, while additionally allowing the combination with consecutive downstream analyses of the very same specimen.

摘要

组织切片的空间转录组学已经彻底改变了生命科学领域的研究,使人们能够以前所未有的视角深入了解组织重排过程中的遗传机制。然而,与基因组分析相比,样品的实际生物分子组成却落后了,留下了可能极具价值的信息空白。拉曼显微光谱学以高分辨率提供了非靶向的空间分子信息,有潜力填补这一空白。在本研究中,我们通过重新利用常用于转录组分析的最先进的生物信息分析工具,展示了空间分辨拉曼“光谱组学”如何在分子水平上揭示细胞基质的均一性、异质性和动态性。通过探索小鼠心肌梗死和心肌肥厚的切片,我们在接近病变的过程中识别出心肌亚群,并定义了周围的代谢和细胞(免疫)景观。因此,我们的这种创新的、无标记的、非侵入性的“光谱组学”方法为深入分析组织样本提供了新的视角,同时还可以与同一标本的后续下游分析相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee1b/10509269/a181ce0555b3/41467_2023_41417_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验