Suppr超能文献

使用深度学习和中红外化学组织病理学成像预测早期乳腺癌治疗后复发情况

Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.

作者信息

Keogan Abigail, Nguyen Thi Nguyet Que, Bouzy Pascaline, Stone Nicholas, Jirstrom Karin, Rahman Arman, Gallagher William M, Meade Aidan D

机构信息

Radiation and Environmental Science Centre, Physical to Life Sciences Research Hub, Technological University Dublin, Dublin, Ireland.

School of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland.

出版信息

NPJ Precis Oncol. 2025 Jan 17;9(1):18. doi: 10.1038/s41698-024-00772-x.

Abstract

Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence. A number of deep learning models were employed, with champion models employing two-dimensional and two-dimensional-separable convolutional networks found to have predictive performance of a ROC AUC of approximately 0.64, which compares well to other clinically used prognostic assays in this space. All-digital chemical imaging may therefore provide a label-free platform for histopathological prognosis in breast cancer, opening new horizons for future deployment of these technologies.

摘要

对于早期乳腺癌(BC)患者而言,预测疾病的长期复发仍然是一项重大挑战,这些患者根据当前临床工具判断处于低至中度复发风险。利用整体转录组学的预后分析忽略了细胞材料的空间背景,因此在构建机制模型方面价值有限。在本研究中,乳腺癌组织的傅里叶变换红外(FTIR)化学图像被用于训练深度学习模型,以预测未来疾病复发。使用了多种深度学习模型,发现采用二维和二维可分离卷积网络的最优模型具有约0.64的ROC曲线下面积(ROC AUC)预测性能,与该领域其他临床使用的预后分析相比表现良好。因此,全数字化学成像可为乳腺癌的组织病理学预后提供一个无标记平台,为这些技术的未来应用开辟新的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验