State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.
Cell Res. 2023 Nov;33(11):835-850. doi: 10.1038/s41422-023-00874-4. Epub 2023 Sep 19.
Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.
糖酵解中间代谢产物,如 1,6-二磷酸果糖,可以作为信号,控制代谢状态,超越能量代谢。然而,糖酵解代谢物是否也在控制细胞命运中发挥作用仍未被探索。在这里,我们发现低水平的糖酵解代谢产物 3-磷酸甘油酸(3-PGA)可以将磷酸甘油酸脱氢酶(PHGDH)从脱羧丝氨酸合成切换到促凋亡的 p53 激活。PHGDH 是 p53 结合蛋白,当不被 3-PGA 占据时,它与支架蛋白 AXIN 相互作用,形成与激酶 HIPK2 的复合物,HIPK2 也是 p53 结合蛋白。这导致形成多价 p53 结合复合物,允许 HIPK2 特异性磷酸化 p53-Ser46,从而促进细胞凋亡。此外,我们表明,与 3-PGA 结合的 PHGDH 突变体(R135W 和 V261M)即使在低糖条件下也能抑制 p53 的激活,而不能与 3-PGA 结合的突变体(T57A 和 T78A)则导致组成性的 p53 激活和肝癌(HCC)细胞凋亡,即使在高糖存在下也是如此。在体内,PHGDH-T57A 诱导细胞凋亡并抑制二乙基亚硝胺诱导的小鼠 HCC 生长,而 PHGDH-R135W 则阻止细胞凋亡并促进 HCC 生长,并且 Trp53 的敲除消除了上述这些影响。重要的是,降低全身葡萄糖水平的热量限制可以阻碍依赖于 PHGDH 的 HCC 生长。总之,这些结果揭示了一种机制,即葡萄糖可用性自主控制 p53 活性,为代谢底物可用性控制细胞命运提供了新的范例。