Suppr超能文献

基于胃质子泵结构的深度学习驱动的从头药物设计。

Deep learning driven de novo drug design based on gastric proton pump structures.

机构信息

Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Aichi, 464-8601, Japan.

Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.

出版信息

Commun Biol. 2023 Sep 19;6(1):956. doi: 10.1038/s42003-023-05334-8.

Abstract

Existing drugs often suffer in their effectiveness due to detrimental side effects, low binding affinity or pharmacokinetic problems. This may be overcome by the development of distinct compounds. Here, we exploit the rich structural basis of drug-bound gastric proton pump to develop compounds with strong inhibitory potency, employing a combinatorial approach utilizing deep generative models for de novo drug design with organic synthesis and cryo-EM structural analysis. Candidate compounds that satisfy pharmacophores defined in the drug-bound proton pump structures, were designed in silico utilizing our deep generative models, a workflow termed Deep Quartet. Several candidates were synthesized and screened according to their inhibition potencies in vitro, and their binding poses were in turn identified by cryo-EM. Structures reaching up to 2.10 Å resolution allowed us to evaluate and re-design compound structures, heralding the most potent compound in this study, DQ-18 (N-methyl-4-((2-(benzyloxy)-5-chlorobenzyl)oxy)benzylamine), which shows a K value of 47.6 nM. Further high-resolution cryo-EM analysis at 2.08 Å resolution unambiguously determined the DQ-18 binding pose. Our integrated approach offers a framework for structure-based de novo drug development based on the desired pharmacophores within the protein structure.

摘要

现有的药物往往由于副作用大、结合亲和力低或药代动力学问题而在疗效上受到影响。通过开发独特的化合物可以克服这些问题。在这里,我们利用药物结合胃质子泵的丰富结构基础,开发具有强抑制活性的化合物,采用组合方法,利用深度生成模型进行从头药物设计,结合有机合成和冷冻电镜结构分析。根据药物结合质子泵结构中定义的药效团,我们在计算机上利用我们的深度生成模型设计候选化合物,这一工作流程称为 Deep Quartet。根据它们在体外的抑制活性合成并筛选了几种候选物,然后通过冷冻电镜确定其结合构象。达到 2.10Å分辨率的结构允许我们评估和重新设计化合物结构,预示着这项研究中最有效的化合物是 DQ-18(N-甲基-4-((2-(苄氧基)-5-氯苄基)氧基)苄基胺),其 K 值为 47.6nM。在 2.08Å分辨率下进行的进一步高分辨率冷冻电镜分析明确确定了 DQ-18 的结合构象。我们的综合方法为基于蛋白质结构中所需药效团的基于结构的从头药物开发提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f045/10509173/c054de3912ad/42003_2023_5334_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验