Suppr超能文献

预处理滤波器对放射组学预测性能的影响。

The effect of preprocessing filters on predictive performance in radiomics.

机构信息

Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.

出版信息

Eur Radiol Exp. 2022 Dec;6(1):40. doi: 10.1186/s41747-022-00294-w. Epub 2022 Sep 1.

Abstract

BACKGROUND

Radiomics is a noninvasive method using machine learning to support personalised medicine. Preprocessing filters such as wavelet and Laplacian-of-Gaussian filters are commonly used being thought to increase predictive performance. However, the use of preprocessing filters increases the number of features by up to an order of magnitude and can produce many correlated features. Both substantially increase the dataset complexity, which in turn makes modeling with machine learning techniques more challenging, possibly leading to poorer performance. We investigated the impact of these filters on predictive performance.

METHODS

Using seven publicly available radiomic datasets, we measured the impact of adding features preprocessed with eight different preprocessing filters to the unprocessed features on the predictive performance of radiomic models. Modeling was performed using five feature selection methods and five classifiers, while predictive performance was measured using area-under-the-curve at receiver operating characteristics analysis (AUC-ROC) with nested, stratified 10-fold cross-validation.

RESULTS

Significant improvements of up to 0.08 in AUC-ROC were observed when all image preprocessing filters were applied compared to using only the original features (up to p = 0.024). Decreases of -0.04 and -0.10 were observed on some data sets, but these were not statistically significant (p > 0.179). Tuning of the image preprocessing filters did not result in decreases in AUC-ROC but further improved results by up to 0.1; however, these improvements were not statistically significant (p > 0.086) except for one data set (p = 0.023).

CONCLUSIONS

Preprocessing filters can have a significant impact on the predictive performance and should be used in radiomic studies.

摘要

背景

放射组学是一种使用机器学习支持个性化医学的非侵入性方法。预处理滤波器,如小波和拉普拉斯高斯滤波器,通常被认为可以提高预测性能而被使用。然而,使用预处理滤波器会将特征数量增加多达一个数量级,并且可能会产生许多相关的特征。这两个因素都大大增加了数据集的复杂性,从而使机器学习技术的建模更加具有挑战性,可能导致性能下降。我们研究了这些滤波器对预测性能的影响。

方法

使用七个公开的放射组学数据集,我们测量了将经过八种不同预处理滤波器预处理的特征添加到原始特征中对放射组学模型预测性能的影响。使用五种特征选择方法和五种分类器进行建模,同时使用嵌套、分层 10 折交叉验证在接收机工作特征分析(AUC-ROC)中测量预测性能。

结果

与仅使用原始特征相比,当应用所有图像预处理滤波器时,AUC-ROC 提高了高达 0.08(最多 p = 0.024)。在某些数据集上观察到下降了 -0.04 和 -0.10,但这并不具有统计学意义(p > 0.179)。对图像预处理滤波器进行调整并没有导致 AUC-ROC 降低,但通过最多 0.1 进一步提高了结果;然而,除了一个数据集(p = 0.023)外,这些改进并不具有统计学意义(p > 0.086)。

结论

预处理滤波器可以对预测性能产生重大影响,因此在放射组学研究中应加以使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06b8/9433552/1a45df6efdb6/41747_2022_294_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验