Suppr超能文献

基于深度学习的新型算法评估腕关节 X 线摄影中舟月骨间距的自动化评估作为舟月韧带撕裂的替代参数及其与关节镜的相关性。

Evaluation of a newly designed deep learning-based algorithm for automated assessment of scapholunate distance in wrist radiography as a surrogate parameter for scapholunate ligament rupture and the correlation with arthroscopy.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.

Department of Diagnostic Radiology, BG Trauma Center Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.

出版信息

Radiol Med. 2023 Dec;128(12):1535-1541. doi: 10.1007/s11547-023-01720-8. Epub 2023 Sep 20.

Abstract

PURPOSE

Not diagnosed or mistreated scapholunate ligament (SL) tears represent a frequent cause of degenerative wrist arthritis. A newly developed deep learning (DL)-based automated assessment of the SL distance on radiographs may support clinicians in initial image interpretation.

MATERIALS AND METHODS

A pre-trained DL algorithm was specifically fine-tuned on static and dynamic dorsopalmar wrist radiography (training data set n = 201) for the automated assessment of the SL distance. Afterwards the DL algorithm was evaluated (evaluation data set n = 364 patients with n = 1604 radiographs) and correlated with results of an experienced human reader and with arthroscopic findings.

RESULTS

The evaluation data set comprised arthroscopically diagnosed SL insufficiency according to Geissler's stages 0-4 (56.5%, 2.5%, 5.5%, 7.5%, 28.0%). Diagnostic accuracy of the DL algorithm on dorsopalmar radiography regarding SL integrity was close to that of the human reader (e.g. differentiation of Geissler's stages ≤ 2 versus > 2 with a sensitivity of 74% and a specificity of 78% compared to 77% and 80%) with a correlation coefficient of 0.81 (P < 0.01).

CONCLUSION

A DL algorithm like this might become a valuable tool supporting clinicians' initial decision making on radiography regarding SL integrity and consequential triage for further patient management.

摘要

目的

未被诊断或治疗不当的舟月骨间韧带(SL)撕裂是退行性腕关节炎的常见原因。一种新开发的基于深度学习(DL)的 SL 距离自动评估方法可帮助临床医生进行初步影像学解读。

材料和方法

专门对静态和动态背侧掌侧腕关节 X 线片(训练数据集 n=201)上的预训练 DL 算法进行了微调,以实现 SL 距离的自动评估。然后,对 DL 算法进行了评估(评估数据集 n=364 例患者,n=1604 张 X 线片),并与有经验的人类读者的结果以及关节镜检查结果进行了比较。

结果

评估数据集包括根据 Geissler 分期 0-4(56.5%、2.5%、5.5%、7.5%、28.0%)的关节镜诊断为 SL 功能不全。DL 算法在背侧掌侧 X 线片上评估 SL 完整性的诊断准确性接近人类读者(例如,区分 Geissler 分期≤2 与>2 的敏感度为 74%,特异性为 78%,而人类读者的敏感度为 77%,特异性为 80%),两者的相关系数为 0.81(P<0.01)。

结论

像这样的 DL 算法可能成为一种有价值的工具,有助于临床医生在放射学上对 SL 完整性进行初步决策,并对进一步的患者管理进行分诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/602b/10700195/351cd3a39aa2/11547_2023_1720_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验