Mao Shih-Peng, Wang Chen-Yu, Liu Chi-Hao, Hsieh Chung-Bao, Pei Dee, Chu Ta-Wei, Liang Yao-Jen
Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C.
Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C.
Endocr J. 2025 Apr 1;72(4):387-398. doi: 10.1507/endocrj.EJ24-0449. Epub 2025 Feb 1.
Insulin resistance (IR) is the core for type 2 diabetes and metabolic syndrome. The homeostasis assessment model is a straightforward and practical tool for quantifying insulin resistance (HOMA-IR). Multiple adaptive regression spline (MARS) is a machine learning method used in many research fields but has yet to be applied to estimating HOMA-IR. This study uses MARS to build an equation to estimate HOMA-IR in pre-menopausal Chinese women based on a sample of 4,071 healthy women aged 20-50 with no major diseases and no medication use for blood pressure, blood glucose or blood lipids. Thirty variables were applied to build the HOMA-IR model, including demographic, laboratory, and lifestyle factors. MARS results in smaller prediction errors than traditional multiple linear regression (MLR) methods, and is thus more accurate. The model was established based on key impact factors including waist-hip ratio (WHR), C reactive protein (CRP), uric acid (UA), total bilirubin (TBIL), leukocyte (WBC), serum glutamic oxaloacetic transaminase (GOT), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), serum glutamic pyruvic transaminase (GPT), and triglycerides (TG). The equation is as following:HOMA-IR = 6.634 - 1.448MAX(0, 0.833 - WHR) + 10.152MAX(0, WHR - 0.833) - 1.351MAX(0, 0.7 - CRP) - 0.449MAX(0, CRP - 0.7) + 1.062MAX(0, UA - 8.5) + +1.047(MAX(0, 0.83 - TBIL) + 0.681MAX(0, WBC - 11.53) - 0.071MAX(0, 11.53 - WBC) + 0.043MAX(0, 24 - GOT) - 0.017MAX(0, GOT - 24) + 0.021MAX(0, 59 - HDL) - 0.005MAX(0, HDL - 59) - 0.013MAX(0, 141 - SBP) - 0.033MAX(0, 100 - GPT) + 0.013MAX(0, GPT - 100) - 0.004MAX(303 - TG)Results indicate that MARS is a more precise tool than fasting plasma insulin (FPI) levels, and could be used in the daily practice, and further longitudinal studies are warranted.
胰岛素抵抗(IR)是2型糖尿病和代谢综合征的核心。稳态评估模型是一种用于量化胰岛素抵抗的直接且实用的工具(HOMA-IR)。多元自适应回归样条法(MARS)是一种在许多研究领域中使用的机器学习方法,但尚未应用于估计HOMA-IR。本研究使用MARS建立一个方程,以基于4071名年龄在20至50岁之间、无重大疾病且未使用过治疗血压、血糖或血脂药物的健康女性样本,来估计绝经前中国女性的HOMA-IR。应用30个变量来构建HOMA-IR模型,包括人口统计学、实验室检查和生活方式因素。与传统多元线性回归(MLR)方法相比,MARS产生的预测误差更小,因此更准确。该模型基于包括腰臀比(WHR)、C反应蛋白(CRP)、尿酸(UA)、总胆红素(TBIL)、白细胞(WBC)、血清谷草转氨酶(GOT)、高密度脂蛋白胆固醇(HDL-C)、收缩压(SBP)、血清谷丙转氨酶(GPT)和甘油三酯(TG)等关键影响因素建立。方程如下:HOMA-IR = 6.634 - 1.448MAX(0, 0.833 - WHR) + 10.152MAX(0, WHR - 0.833) - 1.351MAX(0, 0.7 - CRP) - 0.449MAX(0, CRP - 0.7) + 1.062MAX(0, UA - 8.5) + +1.047(MAX(0, 0.83 - TBIL) + 0.681MAX(0, WBC - 11.53) - 0.071MAX(0, 11.53 - WBC) + 0.043MAX(0, 24 - GOT) - 0.017MAX(0, GOT - 24) + 0.021MAX(0, 59 - HDL) - 0.005MAX(0, HDL - 59) - 0.013MAX(0, 141 - SBP) - 0.033MAX(0, 100 - GPT) + 0.013MAX(0, GPT - 100) - 0.004MAX(303 - TG)结果表明,MARS是一种比空腹血浆胰岛素(FPI)水平更精确的工具,可用于日常实践,并且有必要进行进一步的纵向研究。