Vascular Biology Center (R.T.A., R.K.B., C.R.J., S.K., G.A., T.B.-N., V.M., T.F., M.U.-F., Y.H., D.J.R.F., E.J.B.d.C.), Medical College of Georgia, Augusta University.
Department of Surgery (M.I.S., V.S.P.), Medical College of Georgia, Augusta University.
Hypertension. 2023 Oct;80(10):2059-2071. doi: 10.1161/HYPERTENSIONAHA.123.21341. Epub 2023 Aug 18.
Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown.
Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis. Seahorse analyzer and myography were employed to measure glycolysis and mitochondrial respiration, and EDR, respectively, in aortic explants. EC PFKFB3 (Ad-PFKFB3) and glycolysis (Ad-GlycoHi) were increased in situ via adenoviral transduction.
T1D increased EC glycolysis and elevated EC expression of PFKFB3 and NADPH oxidase Nox1 (NADPH oxidase homolog 1). Functionally, pharmacological and genetic inhibition of PFKFB3 restored EDR in T1D, while in situ aorta EC transduction with Ad-PFKFB3 or Ad-GlycoHi reproduced the impaired EDR associated with T1D. Nox1 inhibition restored EDR in aortic rings from Akita mice, as well as in Ad-PFKFB3-transduced aorta EC and lactate-treated wild-type aortas. T1D increased the expression of the advanced glycation end product precursor methylglyoxal in the aortas. Exposure of the aortas to methylglyoxal impaired EDR, which was prevented by PFKFB3 inhibition. T1D and exposure to methylglyoxal increased EC expression of HIF1α (hypoxia-inducible factor 1α), whose inhibition blunted methylglyoxal-mediated EC PFKFB3 upregulation.
EC bioenergetics, namely glycolysis, is a new regulator of vasomotion and excess glycolysis, a novel mechanism of endothelial dysfunction in T1D. We introduce excess methylglyoxal, HIF1α, and PFKFB3 as major effectors in T1D-mediated increased EC glycolysis.
1 型糖尿病(T1D)是内皮功能障碍的主要原因。尽管细胞生物能量学已被确定为血管功能的新调节剂,但糖酵解(内皮细胞(EC)的主要生物能量途径)是否调节血管张力并导致 T1D 中受损的内皮依赖性松弛(EDR)尚不清楚。
在完整或选择性缺乏 EC PFKFB3(6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶 3)的 Akita 小鼠中进行实验,PFKFB3 是糖酵解的主要调节剂。使用 Seahorse 分析仪和肌动描记术分别测量主动脉外植体中的糖酵解和线粒体呼吸以及 EDR。通过腺病毒转导原位增加 EC PFKFB3(Ad-PFKFB3)和糖酵解(Ad-GlycoHi)。
T1D 增加了 EC 的糖酵解,并升高了 EC 中 PFKFB3 和 NADPH 氧化酶 Nox1(NADPH 氧化酶同源物 1)的表达。在功能上,PFKFB3 的药理学和基因抑制恢复了 T1D 中的 EDR,而在 T1D 相关的主动脉 EC 转导 Ad-PFKFB3 或 Ad-GlycoHi 复制了受损的 EDR。Nox1 抑制恢复了 Akita 小鼠主动脉环、Ad-PFKFB3 转导的主动脉 EC 和乳酸处理的野生型主动脉中的 EDR。T1D 增加了主动脉中晚期糖基化终产物前体甲基乙二醛的表达。暴露于甲基乙二醛会损害 EDR,而 PFKFB3 抑制可预防这种损害。T1D 和暴露于甲基乙二醛增加了 EC 中 HIF1α(缺氧诱导因子 1α)的表达,抑制 HIF1α 减弱了甲基乙二醛介导的 EC PFKFB3 上调。
EC 生物能量学,即糖酵解,是血管运动的新调节剂,也是 T1D 中内皮功能障碍的新机制。我们介绍了过量的甲基乙二醛、HIF1α 和 PFKFB3,作为 T1D 介导的 EC 糖酵解增加的主要效应物。