Suppr超能文献

用于超级电容器应用的从石榴皮中低温绿色合成少层石墨烯片材

Low-temperature green synthesis of few-layered graphene sheets from pomegranate peels for supercapacitor applications.

作者信息

Anagbonu Prince, Ghali Mohsen, Allam Ahmed

机构信息

Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab, 21934, Alexandria, Egypt.

Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt.

出版信息

Sci Rep. 2023 Sep 20;13(1):15627. doi: 10.1038/s41598-023-42029-w.

Abstract

Graphene presents practical applications in energy storage devices, especially supercapacitors. However, mainstream synthesis of graphene includes toxic chemical usage, which threatens the environment. With the recent attention shift to synthesizing nanomaterials from agro-waste due to their easy availability, cost-effectiveness, and, most importantly, their environmental friendliness, we present, in this work for the first time, a novel and green synthesis of few-layered graphene sheets using pomegranate peels as a precursor at a low temperature of 80 °C. The surface morphology and microstructural properties are determined by Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray spectroscopy (EDX), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy (UV-vis), and the electrical properties determined by Hall Effect Measurement. The application as a supercapacitor is also examined using Cyclic Voltammetry (CV), Charge-Discharge Cycling (GCD), and Electrochemical Impedance Spectroscopy (EIS). The resulting supercapacitor delivers an areal capacitance of [Formula: see text] at a current density of 15.6 μA [Formula: see text], making our synthesized graphene a good choice for electrochemical storage devices.

摘要

石墨烯在能量存储设备,尤其是超级电容器中具有实际应用。然而,石墨烯的主流合成方法涉及使用有毒化学物质,这对环境构成威胁。由于农业废弃物易于获取、成本效益高,且最重要的是其环境友好性,近来人们的注意力转向了利用农业废弃物合成纳米材料。在这项工作中,我们首次展示了一种新颖的绿色合成方法,即在80°C的低温下,以石榴皮为前驱体合成少层石墨烯片。通过透射电子显微镜(TEM)、能量色散X射线光谱(EDX)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、紫外可见光谱(UV-vis)来确定表面形态和微观结构特性,并通过霍尔效应测量来确定电学性质。还使用循环伏安法(CV)、充放电循环(GCD)和电化学阻抗谱(EIS)来研究其作为超级电容器的应用。所得超级电容器在15.6 μA的电流密度下提供了[公式:见原文]的面积电容,这使得我们合成的石墨烯成为电化学存储设备的理想选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e0/10511523/c5bf3d2fda6e/41598_2023_42029_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验