Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
Sci Rep. 2023 Sep 20;13(1):15620. doi: 10.1038/s41598-023-42925-1.
Monoclonal antibodies (mAbs) eliminate cancer cells via various effector mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are influenced by the N-glycan structures on the Fc region of mAbs. Manipulating these glycan structures on mAbs allows for optimization of therapeutic benefits associated with effector functions. Traditional approaches such as gene deletion or overexpression often lead to only all-or-nothing changes in gene expression and fail to modulate the expression of multiple genes at defined ratios and levels. In this work, we have developed a CHO cell engineering platform enabling modulation of multiple gene expression to tailor the N-glycan profiles of mAbs for enhanced effector functions. Our platform involves a CHO targeted integration platform with two independent landing pads, allowing expression of multiple genes at two pre-determined genomic sites. By combining with internal ribosome entry site (IRES)-based polycistronic vectors, we simultaneously modulated the expression of α-mannosidase II (MANII) and chimeric β-1,4-N-acetylglucosaminyl-transferase III (cGNTIII) genes in CHO cells. This strategy enabled the production of mAbs carrying N-glycans with various levels of bisecting and non-fucosylated structures. Importantly, these engineered mAbs exhibited different degrees of effector cell activation and CDC, facilitating the identification of mAbs with optimal effector functions. This platform was demonstrated as a powerful tool for producing antibody therapeutics with tailored effector functions via precise engineering of N-glycan profiles. It holds promise for advancing the field of metabolic engineering in mammalian cells.
单克隆抗体(mAbs)通过多种效应机制消除癌细胞,包括抗体依赖的细胞介导的细胞毒性(ADCC)和补体依赖的细胞毒性(CDC),这些机制受 mAbs Fc 区域 N-糖链结构的影响。操纵这些 mAbs 上的糖链结构可以优化与效应功能相关的治疗益处。传统方法,如基因缺失或过表达,往往导致基因表达的全有或全无变化,并且无法以定义的比例和水平调节多个基因的表达。在这项工作中,我们开发了一种 CHO 细胞工程平台,能够调节多个基因的表达,以定制 mAbs 的 N-糖链谱,增强效应功能。我们的平台涉及带有两个独立着陆垫的 CHO 靶向整合平台,允许在两个预定的基因组位点表达多个基因。通过与内部核糖体进入位点(IRES)为基础的多顺反子载体结合,我们同时在 CHO 细胞中调节α-甘露糖苷酶 II(MANII)和嵌合β-1,4-N-乙酰氨基葡萄糖转移酶 III(cGNTIII)基因的表达。这种策略使生产携带不同程度双分支和非岩藻糖基化结构的 N-糖链的 mAbs 成为可能。重要的是,这些工程化的 mAbs 表现出不同程度的效应细胞激活和 CDC,有助于鉴定具有最佳效应功能的 mAbs。该平台被证明是一种通过精确工程化 N-糖链谱生产具有定制效应功能的抗体治疗药物的强大工具。它有望推进哺乳动物细胞代谢工程领域的发展。