Suppr超能文献

ALE 基于体素的形态测量学研究的荟萃分析:通过大规模模拟进行参数验证。

ALE meta-analyses of voxel-based morphometry studies: Parameter validation via large-scale simulations.

机构信息

Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine (INM7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.

Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

出版信息

Neuroimage. 2023 Nov 1;281:120383. doi: 10.1016/j.neuroimage.2023.120383. Epub 2023 Sep 20.

Abstract

Activation likelihood estimation (ALE) meta-analysis has been applied to structural neuroimaging data since long, but up to now, any systematic assessment of the algorithm's behavior, power and sensitivity has been based on simulations using functional neuroimaging databases as their foundation. Here, we aimed to determine whether the guidelines offered by previous evaluations can be generalized to ALE meta-analyses of voxel-based morphometry (VBM) studies. We ran 365000 distinct ALE analyses filled with simulated experiments, randomly sampling parameters from BrainMap's VBM experiment database. We then examined the algorithm's sensitivity, its susceptibility to spurious convergence, and its susceptibility to excessive contributions by individual experiments. In general, the performance of the ALE algorithm was highly comparable between imaging modalities, with the algorithm's sensitivity and specificity reaching similar levels with structural data as previously observed with functional data. Because of the lower number of foci reported and the higher number of participants usually included in structural experiments, individual studies had, on average, a higher impact towards significant clusters. To prevent significant clusters from being driven by single experiments, we recommend that researchers include at least 23 experiments in a VBM ALE dataset, instead of the previously recommended minimum of n = 17. While these recommendations do not constitute hard borders, running ALE analyses on smaller datasets would require special diligence in assessing and reporting the contributions of experiments to individual clusters.

摘要

激活似然估计 (ALE) 元分析早已应用于结构神经影像学数据,但到目前为止,对该算法行为、功效和灵敏度的任何系统评估都基于使用功能神经影像学数据库作为基础的模拟。在这里,我们旨在确定之前的评估所提供的准则是否可以推广到基于体素的形态学 (VBM) 研究的 ALE 元分析。我们运行了 365000 个独特的 ALE 分析,其中填充了模拟实验,从 BrainMap 的 VBM 实验数据库中随机抽样参数。然后,我们检查了算法的灵敏度、对虚假收敛的敏感性以及对个别实验过度贡献的敏感性。一般来说,成像方式之间的 ALE 算法性能高度可比,算法的灵敏度和特异性与以前观察到的功能数据相似,达到了结构数据的水平。由于报告的焦点数量较少,以及通常包含在结构实验中的参与者数量较多,因此平均而言,个别研究对显著簇的影响更大。为了防止显著簇受到单个实验的驱动,我们建议研究人员在 VBM ALE 数据集至少包含 23 个实验,而不是之前推荐的 n = 17 的最小值。虽然这些建议不构成硬性边界,但在较小的数据集上运行 ALE 分析需要特别注意评估和报告实验对单个簇的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00d1/10686967/88045bdfaf89/nihms-1945402-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验