Suppr超能文献

基于大规模模拟的激活似然估计荟萃分析中阈值得分方法的评价。

Evaluation of thresholding methods for activation likelihood estimation meta-analysis via large-scale simulations.

机构信息

Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.

Institute of Neuroscience and Medicine (INM7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.

出版信息

Hum Brain Mapp. 2022 Sep;43(13):3987-3997. doi: 10.1002/hbm.25898. Epub 2022 May 10.

Abstract

In recent neuroimaging studies, threshold-free cluster enhancement (TFCE) gained popularity as a sophisticated thresholding method for statistical inference. It was shown to feature higher sensitivity than the frequently used approach of controlling the cluster-level family-wise error (cFWE) and it does not require setting a cluster-forming threshold at voxel level. Here, we examined the applicability of TFCE to a widely used method for coordinate-based neuroimaging meta-analysis, Activation Likelihood Estimation (ALE), by means of large-scale simulations. We created over 200,000 artificial meta-analysis datasets by independently varying the total number of experiments included and the amount of spatial convergence across experiments. Next, we applied ALE to all datasets and compared the performance of TFCE to both voxel-level and cluster-level FWE correction approaches. All three multiple-comparison correction methods yielded valid results, with only about 5% of the significant clusters being based on spurious convergence, which corresponds to the nominal level the methods were controlling for. On average, TFCE's sensitivity was comparable to that of cFWE correction, but it was slightly worse for a subset of parameter combinations, even after TFCE parameter optimization. cFWE yielded the largest significant clusters, closely followed by TFCE, while voxel-level FWE correction yielded substantially smaller clusters, showcasing its high spatial specificity. Given that TFCE does not outperform the standard cFWE correction but is computationally much more expensive, we conclude that employing TFCE for ALE cannot be recommended to the general user.

摘要

在最近的神经影像学研究中,无阈值簇增强(TFCE)作为一种用于统计推断的复杂阈值方法变得流行起来。与经常使用的控制簇级总体错误(cFWE)的方法相比,它具有更高的灵敏度,并且不需要在体素水平设置簇形成阈值。在这里,我们通过大规模模拟检查了 TFCE 对基于坐标的神经影像学荟萃分析中常用方法的适用性,即激活似然估计(ALE)。我们通过独立改变纳入的实验总数和实验之间的空间收敛程度,创建了超过 20 万个人工荟萃分析数据集。接下来,我们将 ALE 应用于所有数据集,并将 TFCE 的性能与体素水平和簇水平 FWE 校正方法进行了比较。所有三种多重比较校正方法都产生了有效的结果,只有约 5%的显著簇是基于虚假收敛的,这与方法控制的名义水平相对应。平均而言,TFCE 的灵敏度与 cFWE 校正相当,但对于某些参数组合,其灵敏度略差,即使在优化 TFCE 参数后也是如此。cFWE 产生的显著簇最大,其次是 TFCE,而体素水平 FWE 校正产生的显著簇要小得多,展示了其高空间特异性。鉴于 TFCE 并不优于标准的 cFWE 校正,但计算成本却高得多,因此我们得出结论,对于一般用户,不建议使用 TFCE 对 ALE 进行校正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc36/9374884/3a6770bb5432/HBM-43-3987-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验