Suppr超能文献

身高预测模型的评估:从传统方法到人工智能

Evaluation of height prediction models: from traditional methods to artificial intelligence.

作者信息

Chávez-Vázquez Ana G, Klünder-Klünder Miguel, Garibay-Nieto Nayely G, López-González Desirée, Sánchez-Curiel Loyo Mariana, Miranda-Lora América L

机构信息

Unit of Epidemiological Research in Endocrinology and Nutrition, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.

Research Subdirectorate, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.

出版信息

Pediatr Res. 2024 Jan;95(1):308-315. doi: 10.1038/s41390-023-02821-w. Epub 2023 Sep 21.

Abstract

BACKGROUND

Traditional methods for predicting adult height (AHP) rely on manual readings of bone age (BA). However, the incorporation of artificial intelligence has recently improved the accuracy of BA readings and their incorporation into AHP models.

METHODS

This study aimed to identify the AHP model that fits the current average height for adults in Mexico. Using a cross-sectional design, the study included 1173 participants (5-18 yr). BA readings were done by two experts (manually) and with an automated method (BoneXpert®). AHP was carried out using both traditional and automated methods. The best AHP model was the one that was closest to the population mean.

RESULTS

All models overestimated the population mean (males: 0.7-6.7 cm, females: 0.9-3.7 cm). The AHP models with the smallest difference were BoneXpert for males and Bayley & Pinneau for females. However, the manual readings of BA showed significant interobserver variability (up to 43% of predictions between observers exceeded 5 cm using the Bayley & Pinneau method).

CONCLUSION

Traditional AHP models relying on manual BA readings have high interobserver variability. Therefore, BoneXpert is the most reliable option, reducing such variability and providing AHP models that remain close to the mean population height.

IMPACT

Traditional models for predicting adult height often result in overestimated height predictions. The manual reading of bone age is prone to interobserver variability, which can introduce significant biases in the prediction of adult height. The BoneXpert method minimizes the variability associated with traditional methods and demonstrates consistent results in relation to the average height of the population. This study is the first to assess adult height prediction models specifically in the current generations of Mexican children.

摘要

背景

预测成人身高(AHP)的传统方法依赖于骨龄(BA)的人工读数。然而,人工智能的融入最近提高了BA读数的准确性及其在AHP模型中的应用。

方法

本研究旨在确定适合墨西哥成年人当前平均身高的AHP模型。采用横断面设计,该研究纳入了1173名参与者(5 - 18岁)。BA读数由两名专家手动完成,并使用自动化方法(BoneXpert®)。AHP使用传统方法和自动化方法进行。最佳的AHP模型是最接近总体均值的模型。

结果

所有模型均高估了总体均值(男性:0.7 - 6.7厘米,女性:0.9 - 3.7厘米)。差异最小的AHP模型,男性为BoneXpert,女性为Bayley & Pinneau。然而,BA的人工读数显示观察者间存在显著差异(使用Bayley & Pinneau方法时,观察者之间高达43%的预测超过5厘米)。

结论

依赖BA人工读数的传统AHP模型观察者间差异较大。因此,BoneXpert是最可靠的选择,可减少此类差异并提供接近总体平均身高的AHP模型。

影响

传统的预测成人身高模型往往导致身高预测过高。骨龄的人工读数容易出现观察者间差异,这可能在成人身高预测中引入显著偏差。BoneXpert方法将与传统方法相关的差异降至最低,并在与总体平均身高的关系上显示出一致的结果。本研究首次专门评估了当代墨西哥儿童的成人身高预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验