Suppr超能文献

CE-CT 放射组学预测肝癌中高 Ki-67 表达的增值。

Added value of CE-CT radiomics to predict high Ki-67 expression in hepatocellular carcinoma.

机构信息

Medical School of Nankai University, No. 94, Weijin Road, Nankai District, Tianjin, China.

Department of Radiology, Tianjin First Center Hospital, Tianjin Institute of imaging medicine, School of Medicine, Nankai University, Nankai District, No. 24 Fukang Road, Tianjin, China.

出版信息

BMC Med Imaging. 2023 Sep 22;23(1):138. doi: 10.1186/s12880-023-01069-4.

Abstract

BACKGROUND

This study aimed to develop a computed tomography (CT) model to predict Ki-67 expression in hepatocellular carcinoma (HCC) and to examine the added value of radiomics to clinico-radiological features.

METHODS

A total of 208 patients (training set, n = 120; internal test set, n = 51; external validation set, n = 37) with pathologically confirmed HCC who underwent contrast-enhanced CT (CE-CT) within 1 month before surgery were retrospectively included from January 2014 to September 2021. Radiomics features were extracted and selected from three phases of CE-CT images, least absolute shrinkage and selection operator regression (LASSO) was used to select features, and the rad-score was calculated. CE-CT imaging and clinical features were selected using univariate and multivariate analyses, respectively. Three prediction models, including clinic-radiologic (CR) model, rad-score (R) model, and clinic-radiologic-radiomic (CRR) model, were developed and validated using logistic regression analysis. The performance of different models for predicting Ki-67 expression was evaluated using the area under the receiver operating characteristic curve (AUROC) and decision curve analysis (DCA).

RESULTS

HCCs with high Ki-67 expression were more likely to have high serum α-fetoprotein levels (P = 0.041, odds ratio [OR] 2.54, 95% confidence interval [CI]: 1.04-6.21), non-rim arterial phase hyperenhancement (P = 0.001, OR 15.13, 95% CI 2.87-79.76), portal vein tumor thrombus (P = 0.035, OR 3.19, 95% CI: 1.08-9.37), and two-trait predictor of venous invasion (P = 0.026, OR 14.04, 95% CI: 1.39-144.32). The CR model achieved relatively good and stable performance compared with the R model (AUC, 0.805 [95% CI: 0.683-0.926] vs. 0.678 [95% CI: 0.536-0.839], P = 0.211; and 0.805 [95% CI: 0.657-0.953] vs. 0.667 [95% CI: 0.495-0.839], P = 0.135) in the internal and external validation sets. After combining the CR model with the R model, the AUC of the CRR model increased to 0.903 (95% CI: 0.849-0.956) in the training set, which was significantly higher than that of the CR model (P = 0.0148). However, no significant differences were found between the CRR and CR models in the internal and external validation sets (P = 0.264 and P = 0.084, respectively).

CONCLUSIONS

Preoperative models based on clinical and CE-CT imaging features can be used to predict HCC with high Ki-67 expression accurately. However, radiomics cannot provide added value.

摘要

背景

本研究旨在开发一种计算机断层扫描(CT)模型,以预测肝细胞癌(HCC)的 Ki-67 表达,并检验放射组学对临床-放射特征的附加价值。

方法

回顾性纳入了 2014 年 1 月至 2021 年 9 月期间共 208 例经病理证实 HCC 患者的资料,这些患者均在手术前 1 个月内行增强 CT(CE-CT)检查。从 CE-CT 的三期图像中提取和选择放射组学特征,使用最小绝对收缩和选择算子回归(LASSO)进行特征选择,并计算 rad-score。使用单变量和多变量分析分别选择 CE-CT 成像和临床特征。使用逻辑回归分析分别建立和验证包括临床-放射学(CR)模型、rad-score(R)模型和临床-放射学-放射组学(CRR)模型在内的三种预测模型。使用受试者工作特征曲线(ROC)下面积(AUROC)和决策曲线分析(DCA)评估不同模型预测 Ki-67 表达的性能。

结果

Ki-67 高表达 HCC 患者更有可能具有高血清α-胎蛋白水平(P=0.041,优势比[OR]2.54,95%置信区间[CI]:1.04-6.21)、非环形动脉期高增强(P=0.001,OR 15.13,95%CI:2.87-79.76)、门静脉癌栓(P=0.035,OR 3.19,95%CI:1.08-9.37)和静脉侵犯的双特征预测因子(P=0.026,OR 14.04,95%CI:1.39-144.32)。与 R 模型相比,CR 模型具有较好且稳定的性能(AUC,0.805[95%CI:0.683-0.926]比 0.678[95%CI:0.536-0.839],P=0.211;0.805[95%CI:0.657-0.953]比 0.667[95%CI:0.495-0.839],P=0.135),在内部和外部验证组中均表现良好。在将 CR 模型与 R 模型相结合后,CRR 模型的 AUC 在训练组中增加至 0.903(95%CI:0.849-0.956),明显高于 CR 模型(P=0.0148)。然而,在内部和外部验证组中,CRR 模型与 CR 模型之间无显著差异(P=0.264 和 P=0.084)。

结论

基于临床和 CE-CT 成像特征的术前模型可准确预测 Ki-67 高表达的 HCC。但是,放射组学不能提供附加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a76/10514983/efb045ae5311/12880_2023_1069_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验