Suppr超能文献

基于 XY-Net 的脑胶质瘤自动分割。

Automatic segmentation of brain glioma based on XY-Net.

机构信息

Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, 330006, China.

Department of Radiology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.

出版信息

Med Biol Eng Comput. 2024 Jan;62(1):153-166. doi: 10.1007/s11517-023-02927-7. Epub 2023 Sep 23.

Abstract

Glioma is a malignant primary brain tumor, which can easily lead to death if it is not detected in time. Magnetic resonance imaging is the most commonly used technique to diagnose gliomas, and precise outlining of tumor areas from magnetic resonance images (MRIs) is an important aid to physicians in understanding the patient's condition and formulating treatment plans. However, relying on radiologists to manually depict tumors is a tedious and laborious task, so it is clinically important to investigate an automated method for outlining glioma regions in MRIs. To liberate radiologists from the heavy task of outlining tumors, we propose a fully convolutional network, XY-Net, based on the most popular U-Net symmetric encoder-decoder structure to perform automatic segmentation of gliomas. We construct two symmetric sub-encoders for XY-Net and build interconnected X-shaped feature map transmission paths between the sub-encoders, while maintaining the feature map concatenation between each sub-encoder and the decoder. Moreover, a loss function composed of the balanced cross-entropy loss function and the dice loss function is used in the training task of XY-Net to solve the class unevenness problem of the medical image segmentation task. The experimental results show that the proposed XY-Net has a 2.16% improvement in dice coefficient (DC) compared to the network model with a single encoder structure, and compare with some state-of-the-art image segmentation methods, XY-Net achieves the best performance. The DC, HD, recall, and precision of our method on the test set are 74.49%, 10.89 mm, 78.06%, and 76.30%, respectively. The combination of sub-encoders and cross-transmission paths enables the model to perform better; based on this combination, the XY-Net achieves an end-to-end automatic segmentation of gliomas on 2D slices of MRIs, which can play a certain auxiliary role for doctors in grasping the state of illness.

摘要

脑胶质瘤是一种恶性原发性脑肿瘤,如果不能及时发现,很容易导致死亡。磁共振成像是诊断脑胶质瘤最常用的技术,从磁共振图像(MRI)中精确勾勒出肿瘤区域是医生了解患者病情和制定治疗计划的重要辅助手段。然而,依靠放射科医生手动描绘肿瘤是一项繁琐且费力的任务,因此研究一种自动勾画 MRI 中脑胶质瘤区域的方法在临床上具有重要意义。为了解放放射科医生勾画肿瘤的繁重任务,我们提出了一种基于最流行的 U-Net 对称编码器-解码器结构的全卷积网络 XY-Net,用于自动分割脑胶质瘤。我们为 XY-Net 构建了两个对称的子编码器,并在子编码器之间构建了相互连接的 X 形特征图传输路径,同时保持每个子编码器和解码器之间的特征图拼接。此外,在 XY-Net 的训练任务中使用了由平衡交叉熵损失函数和骰子损失函数组成的损失函数,以解决医学图像分割任务的类别不均匀问题。实验结果表明,与具有单个编码器结构的网络模型相比,所提出的 XY-Net 的骰子系数(DC)提高了 2.16%,并且与一些最先进的图像分割方法相比,XY-Net 取得了最佳性能。我们的方法在测试集上的 DC、HD、召回率和精度分别为 74.49%、10.89mm、78.06%和 76.30%。子编码器和交叉传输路径的组合使模型能够更好地发挥作用;基于这种组合,XY-Net 实现了对 MRI 二维切片上脑胶质瘤的端到端自动分割,可以在一定程度上辅助医生掌握病情。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验