Rao Ankit, Sanjay Sooraj, Dey Vivek, Ahmadi Majid, Yadav Pramod, Venugopalrao Anirudh, Bhat Navakanta, Kooi Bart, Raghavan Srinivasan, Nukala Pavan
Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
Mater Horiz. 2023 Oct 30;10(11):5235-5245. doi: 10.1039/d3mh01000g.
Networks and systems which exhibit brain-like behavior can analyze information from intrinsically noisy and unstructured data with very low power consumption. Such characteristics arise due to the critical nature and complex interconnectivity of the brain and its neuronal network. We demonstrate a system comprising of multilayer hexagonal boron nitride (hBN) films contacted with silver (Ag), which can uniquely host two different self-assembled networks, which are self-organized at criticality (SOC). This system shows bipolar resistive switching between the high resistance state (HRS) and the low resistance state (LRS). In the HRS, Ag clusters (nodes) intercalate in the van der Waals gaps of hBN forming a network of tunnel junctions, whereas the LRS contains a network of Ag filaments. The temporal avalanche dynamics in both these states exhibit power-law scaling, long-range temporal correlation, and SOC. These networks can be tuned from one to another with voltage as a control parameter. For the first time, two different neural networks are realized in a single CMOS compatible, 2D material platform.
表现出类脑行为的网络和系统能够以极低的功耗分析来自本质上有噪声且无结构的数据中的信息。此类特性源于大脑及其神经网络的临界性质和复杂的互连性。我们展示了一个由与银(Ag)接触的多层六方氮化硼(hBN)薄膜组成的系统,该系统能够独特地容纳两种不同的自组装网络,它们在临界状态(SOC)下自组织形成。该系统在高电阻状态(HRS)和低电阻状态(LRS)之间呈现双极电阻切换。在HRS中,银团簇(节点)插入hBN的范德华间隙中,形成隧道结网络,而LRS包含银细丝网络。这两种状态下的时间雪崩动力学均呈现幂律缩放、长程时间相关性和SOC。这些网络可以通过电压作为控制参数从一种状态调谐到另一种状态。首次在单个与CMOS兼容的二维材料平台上实现了两种不同的神经网络。