Mishra Bibhudatta, Wilson David R, Sripathi Srinivas R, Suprenant Mark P, Rui Yuan, Wahlin Karl J, Berlinicke Cynthia A, Green Jordan J, Zack Donald J
Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States.
Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States.
Regen Eng Transl Med. 2019 Sep;6(3):273-285. doi: 10.1007/s40883-019-00118-1. Epub 2019 Jul 24.
Safe and effective delivery of DNA to post-mitotic cells, especially highly differentiated cells, remains a challenge despite significant progress in the development of gene delivery tools. Biodegradable polymeric nanoparticles (NPs) offer an array of advantages for gene delivery over viral vectors due to improved safety, carrying capacity, ease of manufacture, and cell-type specificity. Here we demonstrate the use of a high-throughput screening (HTS) platform to synthesize and screen a library of 148 biodegradable polymeric nanoparticles, successfully identifying structures that enable efficient transfection of human pluripotent stem cell differentiated human retinal pigment epithelial (RPE) cells with minimal toxicity. These NPs can deliver plasmid DNA (pDNA) to RPE monolayers more efficiently than leading commercially available transfection reagents. Novel synthetic polymers are described that enable high efficacy non-viral gene delivery to hard-to-transfect polarized human RPE monolayers, enabling gene loss- and gain-of-function studies of cell signaling, developmental, and disease-related pathways. One new synthetic polymer in particular, 3,3'-iminobis(N,N-dimethylpropylamine)-end terminated poly(1,5-pentanediol diacrylate-co-3 amino-1-propanol) (5-3-J12), was found to form self-assembled nanoparticles when mixed with plasmid DNA that transfect a majority of these human post-mitotic cells with minimal cytotoxicity. The platform described here can be utilized as an enabling technology for gene transfer to human primary and stem cell-derived cells, which are often fragile and resistant to conventional gene transfer approaches.
尽管在基因传递工具的开发方面取得了重大进展,但将DNA安全有效地传递给有丝分裂后的细胞,尤其是高度分化的细胞,仍然是一项挑战。由于安全性提高、承载能力强、易于制造和细胞类型特异性,可生物降解的聚合物纳米颗粒(NPs)在基因传递方面比病毒载体具有一系列优势。在这里,我们展示了使用高通量筛选(HTS)平台来合成和筛选148种可生物降解聚合物纳米颗粒的文库,成功鉴定出能够以最小毒性有效转染人多能干细胞分化的人视网膜色素上皮(RPE)细胞的结构。这些纳米颗粒能够比领先的市售转染试剂更有效地将质粒DNA(pDNA)传递到RPE单层细胞中。本文描述了新型合成聚合物,其能够将高效非病毒基因传递到难以转染的极化人RPE单层细胞中,从而实现对细胞信号传导、发育和疾病相关途径的基因功能缺失和功能获得研究。特别地,发现一种新型合成聚合物,即3,3'-亚氨基双(N,N-二甲基丙胺)封端的聚(1,5-戊二醇二丙烯酸酯-co-3-氨基-1-丙醇)(5-3-J12),与质粒DNA混合时会形成自组装纳米颗粒,能够以最小的细胞毒性转染大多数这些人有丝分裂后细胞。本文所述的平台可作为一种使能技术,用于将基因转移到人类原代细胞和干细胞衍生细胞中,这些细胞通常很脆弱且对传统基因转移方法具有抗性。