Suppr超能文献

从系统发育树推断已知传播对的病毒传播时间。

Inferring viral transmission time from phylogenies for known transmission pairs.

作者信息

Goldberg Emma E, Lundgren Erik J, Romero-Severson Ethan O, Leitner Thomas

机构信息

Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM, USA.

出版信息

bioRxiv. 2023 Nov 16:2023.09.12.557404. doi: 10.1101/2023.09.12.557404.

Abstract

When the time of an HIV transmission event is unknown, methods to identify it from virus genetic data can reveal the circumstances that enable transmission. We developed a single-parameter Markov model to infer transmission time from an HIV phylogeny constructed of multiple virus sequences from people in a transmission pair. Our method finds the statistical support for transmission occurring in different possible time slices. We compared our time-slice model results to previously-described methods: a tree-based logical transmission interval, a simple parsimony-like rules-based method, and a more complex coalescent model. Across simulations with multiple transmitted lineages, different transmission times relative to the source's infection, and different sampling times relative to transmission, we found that overall our time-slice model provided accurate and narrower estimates of the time of transmission. We also identified situations when transmission time or direction was difficult to estimate by any method, particularly when transmission occurred long after the source was infected and when sampling occurred long after transmission. Applying our model to real HIV transmission pairs showed some agreement with facts known from the case investigations. We also found, however, that uncertainty on the inferred transmission time was driven more by uncertainty from time-calibration of the phylogeny than from the model inference itself. Encouragingly, comparable performance of the Markov time-slice model and the coalescent model-which make use of different information within a tree-suggests that a new method remains to be described that will make full use of the topology and node times for improved transmission time inference.

摘要

当HIV传播事件的时间未知时,从病毒基因数据中识别该时间的方法可以揭示促成传播的情况。我们开发了一个单参数马尔可夫模型,用于从由传播对中人群的多个病毒序列构建的HIV系统发育树推断传播时间。我们的方法找到了传播发生在不同可能时间片段的统计支持。我们将时间片段模型的结果与先前描述的方法进行了比较:基于树的逻辑传播间隔、一种简单的基于简约规则的方法以及一种更复杂的合并模型。在对多个传播谱系、相对于源感染的不同传播时间以及相对于传播的不同采样时间进行的模拟中,我们发现总体而言,我们的时间片段模型提供了准确且更窄的传播时间估计。我们还确定了在某些情况下,任何方法都难以估计传播时间或方向,特别是当传播发生在源感染很久之后以及采样发生在传播很久之后。将我们的模型应用于实际的HIV传播对,结果与病例调查中已知的事实有一定的一致性。然而,我们也发现,推断传播时间的不确定性更多地是由系统发育树时间校准的不确定性驱动的,而不是由模型推断本身导致的。令人鼓舞的是,马尔可夫时间片段模型和合并模型(它们在树中利用不同信息)具有可比的性能,这表明仍有待描述一种新方法,该方法将充分利用拓扑结构和节点时间来改进传播时间推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b076/10659889/a2975c400660/nihpp-2023.09.12.557404v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验