Kaneko Takuya, Boulanger-Weill Jonathan, Isabella Adam J, Moens Cecilia B
Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA.
Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.
bioRxiv. 2024 Apr 11:2023.09.11.557289. doi: 10.1101/2023.09.11.557289.
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.
中枢神经系统中的运动神经元通常位于连续的拓扑图中,其中支配不同身体部位的神经元在空间上相互交织。迷走神经的传出神经元就是这种情况,它们支配头部和内脏中的各种肌肉和器官靶点,用于脑与身体的通信。相邻的运动神经元具有不同的固定外周轴突靶点,它们如何发展出产生空间精确身体控制所需的单独树突体(输入)连接性,这一点仍然不清楚。在这里,我们表明,斑马鱼中的迷走运动神经元即使被移植到拓扑图中的异位位置,也确实会对局部感觉刺激产生空间适当的外周反应,这表明在粗略拓扑结构建立之后会发生回路细化。细化依赖于运动神经元的突触传递,这表明一种经验依赖的外周到脑的反馈机制在混合的运动群体中建立了特定的输入连接性。