Suppr超能文献

维甲酸通过 Hgf/Met 信号的时空协调组织斑马鱼迷走运动拓扑图。

Retinoic Acid Organizes the Zebrafish Vagus Motor Topographic Map via Spatiotemporal Coordination of Hgf/Met Signaling.

机构信息

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA.

出版信息

Dev Cell. 2020 May 4;53(3):344-357.e5. doi: 10.1016/j.devcel.2020.03.017. Epub 2020 Apr 16.

Abstract

Information flow through neural circuits often requires their organization into topographic maps in which the positions of cell bodies and synaptic targets correspond. To understand how topographic map development is controlled, we examine the mechanism underlying targeting of vagus motor axons to the pharyngeal arches in zebrafish. We reveal that retinoic acid organizes topography by specifying anterior-posterior identity in vagus motor neurons. We then show that chemoattractant signaling between Hgf and Met is required for vagus innervation of the pharyngeal arches. Finally, we find that retinoic acid controls the spatiotemporal dynamics of Hgf/Met signaling to coordinate axon targeting with the developmental progression of the pharyngeal arches and show that experimentally altering the timing of Hgf/Met signaling is sufficient to redirect axon targeting and disrupt the topographic map. These findings establish a mechanism of topographic map development in which the regulation of chemoattractant signaling in space and time guides axon targeting.

摘要

信息在神经回路中的流动通常需要它们组织成拓扑图,其中细胞体和突触靶位的位置相对应。为了了解拓扑图发展是如何被控制的,我们研究了控制迷走运动轴突投射到斑马鱼咽弓的机制。我们揭示了视黄酸通过在迷走运动神经元中指定前后身份来组织拓扑图。然后我们表明,HGF 和 Met 之间的趋化因子信号对于迷走神经支配咽弓是必需的。最后,我们发现视黄酸控制 Hgf/Met 信号的时空动力学,以协调与咽弓发育进程相关的轴突靶向,并表明实验改变 Hgf/Met 信号的时间足以重新引导轴突靶向并破坏拓扑图。这些发现建立了一种拓扑图发展的机制,其中趋化因子信号在空间和时间上的调节指导轴突靶向。

相似文献

10
Vagus Topographic Map: Wandering through a gRAdient.迷走神经拓扑图:游走于渐变之间。
Dev Cell. 2020 May 4;53(3):257-258. doi: 10.1016/j.devcel.2020.04.014.

引用本文的文献

4
Position-independent functional refinement within the vagus motor topographic map.迷走运动图谱中位置无关的功能细化。
Cell Rep. 2024 Oct 22;43(10):114740. doi: 10.1016/j.celrep.2024.114740. Epub 2024 Sep 25.
5
Embryo-scale reverse genetics at single-cell resolution.单细胞分辨率的胚胎规模反向遗传学。
Nature. 2023 Nov;623(7988):782-791. doi: 10.1038/s41586-023-06720-2. Epub 2023 Nov 15.
8
Development and regeneration of the vagus nerve.迷走神经的发育和再生。
Semin Cell Dev Biol. 2024 Mar 15;156:219-227. doi: 10.1016/j.semcdb.2023.07.008. Epub 2023 Aug 1.

本文引用的文献

2
Retinoic acid signaling pathways.视黄酸信号通路。
Development. 2019 Jul 4;146(13):dev167502. doi: 10.1242/dev.167502.
4
Neuronal specification in space and time.时空中的神经特化。
Science. 2018 Oct 12;362(6411):176-180. doi: 10.1126/science.aas9435.
5
Keeping up with advances in axon guidance.跟上轴突导向的进展。
Curr Opin Neurobiol. 2018 Dec;53:183-191. doi: 10.1016/j.conb.2018.09.004. Epub 2018 Sep 28.
8
Temporal Patterning in the Drosophila CNS.果蝇中枢神经系统的时间模式。
Annu Rev Cell Dev Biol. 2017 Oct 6;33:219-240. doi: 10.1146/annurev-cellbio-111315-125210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验