Gote Christoph, Casiraghi Giona, Schweitzer Frank, Scholtes Ingo
Chair of Systems Design, ETH Zurich, Zurich, Switzerland.
Chair for Machine Learning for Complex Networks, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
Appl Netw Sci. 2023;8(1):68. doi: 10.1007/s41109-023-00596-x. Epub 2023 Sep 22.
Apart from nodes and links, for many networked systems, we have access to data on paths, i.e., collections of temporally ordered variable-length node sequences that are constrained by the system's topology. Understanding the patterns in such data is key to advancing our understanding of the structure and dynamics of complex systems. Moreover, the ability to accurately model and predict paths is important for engineered systems, e.g., to optimise supply chains or provide smart mobility services. Here, we introduce MOGen, a generative modelling framework that enables both next-element and out-of-sample prediction in paths with high accuracy and consistency. It features a model selection approach that automatically determines the optimal model directly from data, effectively making MOGen parameter-free. Using empirical data, we show that our method outperforms state-of-the-art sequence modelling techniques. We further introduce a mathematical formalism that links higher-order models of paths to transition matrices of random walks in multi-layer networks.
除了节点和链接之外,对于许多网络系统,我们还可以获取路径数据,即由系统拓扑结构约束的按时间顺序排列的可变长度节点序列的集合。理解此类数据中的模式是深化我们对复杂系统结构和动态理解的关键。此外,准确建模和预测路径的能力对于工程系统很重要,例如优化供应链或提供智能移动服务。在此,我们引入了MOGen,这是一个生成建模框架,能够在路径中进行高精度和一致性的下一元素预测和样本外预测。它具有一种模型选择方法,可以直接从数据中自动确定最优模型,有效地使MOGen无需参数。使用实证数据,我们表明我们的方法优于现有最先进的序列建模技术。我们还引入了一种数学形式主义,将路径的高阶模型与多层网络中随机游走的转移矩阵联系起来。