Suppr超能文献

利用基于社区的育种计划(CBBP)模型作为协作平台,开发非洲山羊改良网络图像采集协议(AGIN-ICP),采用移动技术进行家畜表型数据的收集和管理。

Using the community-based breeding program (CBBP) model as a collaborative platform to develop the African Goat Improvement Network-Image collection protocol (AGIN-ICP) with mobile technology for data collection and management of livestock phenotypes.

作者信息

Woodward-Greene M Jennifer, Kinser Jason M, Huson Heather J, Sonstegard Tad S, Soelkner Johann, Vaisman Iosif I, Boettcher Paul, Masiga Clet W, Mukasa Christopher, Abegaz Solomon, Agaba Morris, Ahmed Sahar S, Maminiaina Oliver F, Getachew Tesfaye, Gondwe Timothy N, Haile Aynalem, Hassan Yassir, Kihara Absolomon, Kouriba Aly, Mruttu Hassan A, Mujibi Denis, Nandolo Wilson, Rischkowsky Barbara A, Rosen Benjamin D, Sayre Brian, Taela Maria, Van Tassell Curtis P

机构信息

National Agricultural Library, USDA Agricultural Research Service, Beltsville, MD, United States.

Animal Genomics Improvement Laboratory, USDA Agricultural Research Service, Beltsville, MD, United States.

出版信息

Front Genet. 2023 Sep 6;14:1200770. doi: 10.3389/fgene.2023.1200770. eCollection 2023.

Abstract

The African Goat Improvement Network Image Collection Protocol (AGIN-ICP) is an accessible, easy to use, low-cost procedure to collect phenotypic data via digital images. The AGIN-ICP collects images to extract several phenotype measures including health status indicators (anemia status, age, and weight), body measurements, shapes, and coat color and pattern, from digital images taken with standard digital cameras or mobile devices. This strategy is to quickly survey, record, assess, analyze, and store these data for use in a wide variety of production and sampling conditions. The work was accomplished as part of the multinational African Goat Improvement Network (AGIN) collaborative and is presented here as a case study in the AGIN collaboration model and working directly with community-based breeding programs (CBBP). It was iteratively developed and tested over 3 years, in 12 countries with over 12,000 images taken. The AGIN-ICP development is described, and field implementation and the quality of the resulting images for use in image analysis and phenotypic data extraction are iteratively assessed. Digital body measures were validated using the PreciseEdge Image Segmentation Algorithm (PE-ISA) and software showing strong manual to digital body measure Pearson correlation coefficients of height, length, and girth measures (0.931, 0.943, 0.893) respectively. It is critical to note that while none of the very detailed tasks in the AGIN-ICP described here is difficult, every single one of them is even easier to accidentally omit, and the impact of such a mistake could render a sample image, a sampling day's images, or even an entire sampling trip's images difficult or unusable for extracting digital phenotypes. Coupled with tissue sampling and genomic testing, it may be useful in the effort to identify and conserve important animal genetic resources and in CBBP genetic improvement programs by providing reliably measured phenotypes with modest cost. Potential users include farmers, animal husbandry officials, veterinarians, regional government or other public health officials, researchers, and others. Based on these results, a final AGIN-ICP is presented, optimizing the costs, ease, and speed of field implementation of the collection method without compromising the quality of the image data collection.

摘要

非洲山羊改良网络图像采集协议(AGIN - ICP)是一种通过数字图像收集表型数据的便捷、易用且低成本的程序。AGIN - ICP收集图像以从使用标准数码相机或移动设备拍摄的数字图像中提取多种表型测量值,包括健康状况指标(贫血状况、年龄和体重)、身体测量、形状以及毛色和花纹。此策略旨在快速调查、记录、评估、分析和存储这些数据,以用于各种生产和采样条件。这项工作是作为跨国非洲山羊改良网络(AGIN)合作项目的一部分完成的,在此作为AGIN合作模式以及直接与基于社区的育种计划(CBBP)合作的案例研究呈现。它经过3年的迭代开发和测试,在12个国家拍摄了超过12000张图像。本文描述了AGIN - ICP的开发过程,并对其在实地的实施情况以及用于图像分析和表型数据提取的所得图像质量进行了迭代评估。使用精确边缘图像分割算法(PE - ISA)和软件对数字身体测量进行了验证,结果显示身高、体长和胸围测量值的手动测量与数字测量之间的皮尔逊相关系数分别为0.931、0.943、0.893,相关性很强。需要特别注意的是,尽管此处描述的AGIN - ICP中没有一项非常详细的任务是困难的,但其中任何一项都很容易被意外遗漏,而这样一个错误的影响可能会使样本图像、某一天采样的图像,甚至整个采样行程的图像难以用于或无法用于提取数字表型。再加上组织采样和基因组检测,它可能有助于通过以适度成本提供可靠测量的表型来识别和保护重要的动物遗传资源,并用于CBBP遗传改良计划。潜在用户包括农民、畜牧官员、兽医、地区政府或其他公共卫生官员、研究人员及其他人员。基于这些结果,给出了最终的AGIN - ICP,在不影响图像数据收集质量的前提下,优化了采集方法实地实施的成本、便捷性和速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e63/10512022/2e55d6908d32/fgene-14-1200770-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验