Suppr超能文献

PreciseEdge 光栅 RGB 图像分割算法减少了用户对与实际测量高度相关的牲畜数字身体测量的输入。

PreciseEdge raster RGB image segmentation algorithm reduces user input for livestock digital body measurements highly correlated to real-world measurements.

机构信息

USDA-ARS-NEA Animal Genomics and Improvement Laboratory, Beltsville, MD, United States of America.

Bioinformatics and Computational Biology Department, George Mason University, Manassas, VA, United States of America.

出版信息

PLoS One. 2022 Oct 13;17(10):e0275821. doi: 10.1371/journal.pone.0275821. eCollection 2022.

Abstract

Computer vision is a tool that could provide livestock producers with digital body measures and records that are important for animal health and production, namely body height and length, and chest girth. However, to build these tools, the scarcity of labeled training data sets with uniform images (pose, lighting) that also represent real-world livestock can be a challenge. Collecting images in a standard way, with manual image labeling is the gold standard to create such training data, but the time and cost can be prohibitive. We introduce the PreciseEdge image segmentation algorithm to address these issues by employing a standard image collection protocol with a semi-automated image labeling method, and a highly precise image segmentation for automated body measurement extraction directly from each image. These elements, from image collection to extraction are designed to work together to yield values highly correlated to real-world body measurements. PreciseEdge adds a brief preprocessing step inspired by chromakey to a modified GrabCut procedure to generate image masks for data extraction (body measurements) directly from the images. Three hundred RGB (red, green, blue) image samples were collected uniformly per the African Goat Improvement Network Image Collection Protocol (AGIN-ICP), which prescribes camera distance, poses, a blue backdrop, and a custom AGIN-ICP calibration sign. Images were taken in natural settings outdoors and in barns under high and low light, using a Ricoh digital camera producing JPG images (converted to PNG prior to processing). The rear and side AGIN-ICP poses were used for this study. PreciseEdge and GrabCut image segmentation methods were compared for differences in user input required to segment the images. The initial bounding box image output was captured for visual comparison. Automated digital body measurements extracted were compared to manual measures for each method. Both methods allow additional optional refinement (mouse strokes) to aid the segmentation algorithm. These optional mouse strokes were captured automatically and compared. Stroke count distributions for both methods were not normally distributed per Kolmogorov-Smirnov tests. Non-parametric Wilcoxon tests showed the distributions were different (p< 0.001) and the GrabCut stroke count was significantly higher (p = 5.115 e-49), with a mean of 577.08 (std 248.45) versus 221.57 (std 149.45) with PreciseEdge. Digital body measures were highly correlated to manual height, length, and girth measures, (0.931, 0.943, 0.893) for PreciseEdge and (0.936, 0. 944, 0.869) for GrabCut (Pearson correlation coefficient). PreciseEdge image segmentation allowed for masks yielding accurate digital body measurements highly correlated to manual, real-world measurements with over 38% less user input for an efficient, reliable, non-invasive alternative to livestock hand-held direct measuring tools.

摘要

计算机视觉是一种工具,可以为牲畜生产者提供重要的动物健康和生产数字身体测量值和记录,即体高、体长和胸围。然而,要构建这些工具,具有统一图像(姿势、光照)且代表实际牲畜的标记训练数据集的稀缺性可能是一个挑战。使用带有手动图像标记的标准图像采集协议来采集图像是创建此类训练数据的黄金标准,但时间和成本可能过高。我们引入了 PreciseEdge 图像分割算法,通过使用带有半自动图像标记方法的标准图像采集协议,以及从每个图像中直接进行自动化身体测量提取的高度精确的图像分割,来解决这些问题。从图像采集到提取的这些元素旨在协同工作,以产生与实际身体测量值高度相关的值。PreciseEdge 为了从图像中直接提取数据(身体测量值),在经过修改的 GrabCut 过程中添加了一个受 chromakey 启发的预处理步骤,以生成图像蒙版。根据非洲山羊改良网络图像采集协议(AGIN-ICP),均匀采集了 300 个 RGB(红、绿、蓝)图像样本,该协议规定了相机距离、姿势、蓝色背景和定制的 AGIN-ICP 校准标志。图像是在户外自然环境和高、低光照下的畜棚中使用理光数码相机拍摄的,生成 JPG 图像(在进行处理之前转换为 PNG)。本研究使用了后向和侧向 AGIN-ICP 姿势。比较了 PreciseEdge 和 GrabCut 图像分割方法在分割图像所需的用户输入方面的差异。捕获初始边界框图像输出进行视觉比较。比较了每种方法提取的自动数字身体测量值与手动测量值。两种方法都允许进行额外的可选细化(鼠标笔划)以辅助分割算法。这些可选的鼠标笔划是自动捕获的,并进行了比较。两种方法的笔划计数分布均不符合柯尔莫哥洛夫-斯米尔诺夫检验的正态分布。非参数 Wilcoxon 检验表明分布不同(p<0.001),GrabCut 的笔划计数明显更高(p=5.115e-49),均值为 577.08(std 248.45),而 PreciseEdge 的均值为 221.57(std 149.45)。数字身体测量值与手动高度、长度和胸围测量值高度相关,(0.931、0.943、0.893)与 PreciseEdge 相关,(0.936、0.944、0.869)与 GrabCut 相关(皮尔逊相关系数)。PreciseEdge 图像分割允许生成与实际、真实世界测量值高度相关的准确数字身体测量值,与手持牲畜直接测量工具相比,用户输入减少了 38%以上,是一种高效、可靠、非侵入性的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3821/9560539/a5cfed0dc847/pone.0275821.g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验