García-Gutiérrez Fernando, Marquié Marta, Muñoz Nathalia, Alegret Montserrat, Cano Amanda, de Rojas Itziar, García-González Pablo, Olivé Clàudia, Puerta Raquel, Orellana Adelina, Montrreal Laura, Pytel Vanesa, Ricciardi Mario, Zaldua Carla, Gabirondo Peru, Hinzen Wolfram, Lleonart Núria, García-Sánchez Ainhoa, Tárraga Lluís, Ruiz Agustín, Boada Mercè, Valero Sergi
Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain.
Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
Front Neurosci. 2023 Sep 7;17:1221401. doi: 10.3389/fnins.2023.1221401. eCollection 2023.
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable early interventions. Among the neuropathological events associated with the onset of the disease is the accumulation of amyloid protein in the brain, which correlates with decreased levels of A42 peptide in the cerebrospinal fluid (CSF). Consequently, the development of non-invasive, low-cost, and easy-to-administer proxies for detecting A42 positivity in CSF becomes particularly valuable. A promising approach to achieve this is spontaneous speech analysis, which combined with machine learning (ML) techniques, has proven highly useful in AD. In this study, we examined the relationship between amyloid status in CSF and acoustic features derived from the description of the Cookie Theft picture in MCI patients from a memory clinic. The cohort consisted of fifty-two patients with MCI (mean age 73 years, 65% female, and 57% positive amyloid status). Eighty-eight acoustic parameters were extracted from voice recordings using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and several ML models were used to classify the amyloid status. Furthermore, interpretability techniques were employed to examine the influence of input variables on the determination of amyloid-positive status. The best model, based on acoustic variables, achieved an accuracy of 75% with an area under the curve (AUC) of 0.79 in the prediction of amyloid status evaluated by bootstrapping and Leave-One-Out Cross Validation (LOOCV), outperforming conventional neuropsychological tests (AUC = 0.66). Our results showed that the automated analysis of voice recordings derived from spontaneous speech tests offers valuable insights into AD biomarkers during the preclinical stages. These findings introduce novel possibilities for the use of digital biomarkers to identify subjects at high risk of developing AD.
阿尔茨海默病(AD)是一种神经退行性疾病,其特征是认知功能逐渐衰退。目前,尚无针对AD的有效治疗方法,这凸显了识别处于轻度认知障碍(MCI)临床前阶段个体以便进行早期干预的重要性。与该疾病发病相关的神经病理学事件之一是大脑中淀粉样蛋白的积累,这与脑脊液(CSF)中A42肽水平的降低相关。因此,开发用于检测CSF中A42阳性的非侵入性、低成本且易于实施的替代方法变得尤为重要。实现这一目标的一种有前景的方法是自发语音分析,该方法与机器学习(ML)技术相结合,已被证明在AD研究中非常有用。在本研究中,我们研究了CSF中的淀粉样蛋白状态与记忆门诊MCI患者对“盗窃饼干”图片描述所衍生的声学特征之间的关系。该队列由52名MCI患者组成(平均年龄73岁,65%为女性,57%淀粉样蛋白状态为阳性)。使用扩展的日内瓦简约声学参数集(eGeMAPS)从语音记录中提取了88个声学参数,并使用多个ML模型对淀粉样蛋白状态进行分类。此外,还采用了解释性技术来检查输入变量对淀粉样蛋白阳性状态判定的影响。基于声学变量的最佳模型在通过自助法和留一法交叉验证(LOOCV)评估的淀粉样蛋白状态预测中,准确率达到75%,曲线下面积(AUC)为0.79,优于传统神经心理学测试(AUC = 0.66)。我们的结果表明,对自发语音测试所得语音记录进行自动分析可为临床前阶段的AD生物标志物提供有价值的见解。这些发现为使用数字生物标志物识别有发展为AD高风险的个体带来了新的可能性。