Suppr超能文献

人类致病真菌中三唑抗性的实验性及宿主体内进化

Experimental and in-host evolution of triazole resistance in human pathogenic fungi.

作者信息

Handelman Mariana, Osherov Nir

机构信息

Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.

出版信息

Front Fungal Biol. 2022 Aug 23;3:957577. doi: 10.3389/ffunb.2022.957577. eCollection 2022.

Abstract

The leading fungal pathogens causing systemic infections in humans are spp., , and . The major class of antifungals used to treat such infections are the triazoles, which target the cytochrome P450 lanosterol 14-α-demethylase, encoded by the (yeasts)/ (molds) genes, catalyzing a key step in the ergosterol biosynthetic pathway. Triazole resistance in clinical fungi is a rising concern worldwide, causing increasing mortality in immunocompromised patients. This review describes the use of serial clinical isolates and evolution toward understanding the mechanisms of triazole resistance. We outline, compare, and discuss how these approaches have helped identify the evolutionary pathways taken by pathogenic fungi to acquire triazole resistance. While they all share a core mechanism (mutation and overexpression of and efflux transporters), their timing and mechanism differs: spp. exhibit resistance-conferring aneuploidies and copy number variants not seen in . spp. have a proclivity to develop resistance by undergoing mutations in transcription factors () that increase the expression of efflux transporters. is especially prone to accumulate resistance mutations in early during the evolution of resistance. Recently, examination of serial clinical isolates and experimental lab-evolved triazole-resistant strains using modern omics and gene editing tools has begun to realize the full potential of these approaches. As a result, triazole-resistance mechanisms can now be analyzed at increasingly finer resolutions. This newfound knowledge will be instrumental in formulating new molecular approaches to fight the rapidly emerging epidemic of antifungal resistant fungi.

摘要

引起人类全身性感染的主要真菌病原体是 种、 种和 种。用于治疗此类感染的主要抗真菌药物类别是三唑类,其作用靶点是细胞色素P450羊毛甾醇14-α-脱甲基酶,该酶由 (酵母)/ (霉菌)基因编码,催化麦角甾醇生物合成途径中的关键步骤。临床真菌中的三唑耐药性在全球范围内日益受到关注,导致免疫功能低下患者的死亡率不断上升。本综述描述了使用系列临床分离株以及 进化来理解三唑耐药机制。我们概述、比较并讨论了这些方法如何有助于确定致病真菌获得三唑耐药性所采取的进化途径。虽然它们都有一个核心机制( 以及外排转运蛋白的突变和过表达),但其时间和机制有所不同: 种表现出赋予耐药性的非整倍体和拷贝数变异,而在 种中未见。 种倾向于通过转录因子( )发生突变来产生耐药性,从而增加外排转运蛋白的表达。在耐药性进化早期, 特别容易在 中积累耐药突变。最近,使用现代组学和基因编辑工具对系列临床分离株和实验室实验进化出的三唑耐药菌株进行检测,已开始发挥这些方法的全部潜力。因此,现在可以以越来越精细的分辨率分析三唑耐药机制。这一最新发现的知识将有助于制定新的分子方法来对抗迅速出现的抗真菌耐药真菌流行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f948/10512370/f747ed941d96/ffunb-03-957577-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验