Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
Antimicrob Agents Chemother. 2021 Aug 17;65(9):e0265720. doi: 10.1128/AAC.02657-20.
Azole resistance of Aspergillus fumigatus is a global problem. The major resistance mechanism is through cytochrome P 14-α sterol demethylase Cyp51A alterations such as a mutation(s) in the gene and the acquisition of a tandem repeat in the promoter. Although other azole tolerance and resistance mechanisms, such as the (a 3-hydroxy-3-methylglutaryl coenzyme-A reductase gene) mutation, are known, few reports have described studies elucidating non-Cyp51A resistance mechanisms. This study explored genes contributing to azole tolerance in A. fumigatus by mutant selection with tebuconazole, an azole fungicide. After three rounds of selection, we obtained four isolates with low susceptibility to tebuconazole. These isolates also showed low susceptibility to itraconazole and voriconazole. Comparison of the genome sequences of the isolates obtained and the parental strain revealed a nonsynonymous mutation in MfsD, a major facilitator superfamily protein (Afu1g11820; R337L mutation [a change of R to L at position 337]), in all isolates. Furthermore, nonsynonymous mutations in AgcA, a mitochondrial inner membrane aspartate/glutamate transporter (Afu7g05220; E535Stop mutation), UbcD, a ubiquitin-conjugating enzyme E2 (Afu3g06030; T98K mutation), AbcJ, an ABC transporter (Afu3g12220; G297E mutation), and RttA, a putative protein esponsible for ebuconazole olerance (Afu7g04740; A83T mutation), were found in at least one isolate. Disruption of the gene led to decreased susceptibility to azoles. Reconstruction of the A83T point mutation in RttA led to decreased susceptibility to azoles. Reversion of the T98K mutation in UbcD to the wild type led to decreased susceptibility to azoles. These results suggest that these mutations contribute to lowered susceptibility to medical azoles and agricultural azole fungicides.
烟曲霉唑类耐药是一个全球性问题。主要的耐药机制是通过细胞色素 P14-α 甾醇去甲基酶 Cyp51A 的改变,如基因突变和启动子串联重复。虽然其他唑类耐受和耐药机制,如(3-羟-3-甲基戊二酰辅酶 A 还原酶基因)突变,已经被发现,但很少有报道描述阐明非 Cyp51A 耐药机制的研究。本研究通过使用唑类杀菌剂特比萘芬对烟曲霉进行突变选择,探索了导致唑类耐受的基因。经过三轮选择,我们获得了对特比萘芬低敏感性的四个分离株。这些分离株对伊曲康唑和伏立康唑也表现出低敏感性。对获得的分离株和亲本菌株的基因组序列进行比较,发现所有分离株中主要易化超家族蛋白(Afu1g11820;R337L 突变[R 位 337 处的 L 取代])的 MfsD 发生了非同义突变。此外,线粒体内膜天冬氨酸/谷氨酸转运体(Afu7g05220;E535Stop 突变)的 AgcA、泛素结合酶 E2(Afu3g06030;T98K 突变)的 UbcD、ABC 转运蛋白(Afu3g12220;G297E 突变)的 AbcJ 和可能负责伊曲康唑耐受的蛋白 esponsible(Afu7g04740;A83T 突变)的 RttA 中的非同义突变至少在一个分离株中被发现。基因的缺失导致对唑类药物的敏感性降低。在 RttA 中构建 A83T 点突变导致对唑类药物的敏感性降低。UbcD 中 T98K 突变回复为野生型导致对唑类药物的敏感性降低。这些结果表明,这些突变导致对医学唑类药物和农业唑类杀菌剂的敏感性降低。