Moore Ronald, Chanci Daniela, Brown Stephanie, Ripple Michael J, Bishop Natalie R, Grunwell Jocelyn, Kamaleswaran Rishikesan
Department of Biomedical Informatics, Emory University, Atlanta, Georgia.
Department of Biomedical Engineering, Duke University, Durham, North Carolina.
Shock. 2025 Jan 1;63(1):80-87. doi: 10.1097/SHK.0000000000002501.
Objective: The Phoenix sepsis criteria define sepsis in children with suspected or confirmed infection who have ≥2 in the Phoenix Sepsis Score. The adoption of the Phoenix sepsis criteria eliminated the Systemic Inflammatory Response Syndrome criteria from the definition of pediatric sepsis. The objective of this study is to derive and validate machine learning models predicting in-hospital mortality for children with suspected or confirmed infection or who met the Phoenix sepsis criteria for sepsis and septic shock. Materials and Methods: Retrospective cohort analysis of 63,824 patients with suspected or confirmed infection admission diagnosis in two pediatric intensive care units (PICUs) in Atlanta, Georgia, from January 1, 2010, through May 10, 2022. The Phoenix Sepsis Score criteria were applied to data collected within 24 h of PICU admission. The primary outcome was in-hospital mortality. The composite secondary outcome was in-hospital mortality or PICU length of stay (LOS) ≥ 72 h. Model-based score performance measures were the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC). Results: Among 18,389/63,824 (29%) children with suspected infection (median age [25th - 75th interquartile range [IQR]): 3.9 [1.1,10.9]; female, 45%, a total of 5,355 met Phoenix sepsis criteria within 24 h of PICU admission. Of the children with Phoenix sepsis, a total of 514 (9.6%) died in the hospital, and 2,848 (53.2%) died or had a PICU stay of ≥72 h. Children with Phoenix septic shock had an in-hospital mortality of 386 (16.4%) and 1,294 (54.9%) had in-hospital mortality or PICU stay of ≥72 h. For children with Phoenix sepsis and Phoenix septic shock, the multivariable logistic regression, light gradient boosting machine, random forest, eXtreme Gradient Boosting, support vector machine, multilayer perceptron, and decision tree models predicting in-hospital mortality had AUPRCs of 0.48-0.65 (95% CI range: 0.42-0.66), 0.50-0.70 (95% CI range: 0.44-0.70), 0.52-0.70 (95% CI range: 0.47-0.71), 0.50-0.70 (95% CI range: 0.44-0.70), 0.49-0.67 (95% CI range: 0.43-0.68), 0.49-0.66 (95% CI range: 0.45-0.67), and 0.30-0.38 (95% CI range: 0.28-0.40) and AUROCs of 0.82-0.88 (95% CI range: 0.82-0.90), 0.84-0.88 (95% CI range: 0.84-0.90), 0.81-0.88 (95% CI range: 0.81-0.90), 0.84-0.88 (95% CI range: 0.83-0.90), 0.82-0.87 (95% CI range: 0.82-0.90), 0.80-0.86 (95% CI range: 0.79-0.89), and 0.76-0.82 (95% CI range: 0.75-0.85), respectively. Conclusion: Among children with Phoenix sepsis admitted to a PICU, the random forest model had the best AUPRC for in-hospital mortality compared to the light gradient boosting machine, eXtreme Gradient Boosting, logistic regression, multilayer perceptron, support vector machine, and decision tree models or a Phoenix Sepsis Score ≥ 2. These findings suggest that machine learning methods to predict in-hospital mortality in children with suspected infection predict mortality in a PICU setting with more accuracy than application of the Phoenix sepsis criteria.
凤凰脓毒症标准用于定义疑似或确诊感染且凤凰脓毒症评分≥2分的儿童脓毒症。采用凤凰脓毒症标准后,小儿脓毒症定义中不再包含全身炎症反应综合征标准。本研究的目的是推导并验证机器学习模型,以预测疑似或确诊感染、或符合凤凰脓毒症标准的脓毒症及脓毒性休克儿童的住院死亡率。材料与方法:对2010年1月1日至2022年5月10日期间,在佐治亚州亚特兰大市两个儿科重症监护病房(PICU)收治的63824例疑似或确诊感染患者进行回顾性队列分析。将凤凰脓毒症评分标准应用于PICU入院后24小时内收集的数据。主要结局为住院死亡率。复合次要结局为住院死亡率或PICU住院时长(LOS)≥72小时。基于模型的评分性能指标为精确召回率曲线下面积(AUPRC)和受试者工作特征曲线下面积(AUROC)。结果:在18389/63824例(29%)疑似感染儿童中(中位年龄[第25 - 75四分位数间距[IQR]]:3.9[1.1,10.9];女性占45%),共有5355例在PICU入院后24小时内符合凤凰脓毒症标准。在符合凤凰脓毒症标准的儿童中,共有514例(9.6%)在医院死亡,2848例(53.2%)死亡或PICU住院时长≥72小时。凤凰脓毒性休克儿童的住院死亡率为386例(16.4%),1294例(54.9%)出现住院死亡或PICU住院时长≥72小时。对于符合凤凰脓毒症和凤凰脓毒性休克标准的儿童,预测住院死亡率的多变量逻辑回归、轻梯度提升机、随机森林、极端梯度提升、支持向量机、多层感知器和决策树模型的AUPRC分别为0.48 - 0.65(95%CI范围:0.42 - 0.66)、0.50 - 0.70(95%CI范围:0.44 - 0.70)、0.52 - 0.70(95%CI范围:0.47 - 0.71)、0.50 - 0.70(95%CI范围:0.44 - 0.70)、0.49 - 0.67(95%CI范围:0.43 - 0.68)、0.49 - 0.66(95%CI范围:0.45 - 0.67)和0.30 - 0.38(95%CI范围:0.28 - 0.40),AUROC分别为0.82 - 0.88(95%CI范围:0.82 - 0.90)、0.84 - 0.88(95%CI范围:0.84 - 0.90)、