文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从基因表达数据推断昼夜节律基因调控关系的混合框架。

Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework.

机构信息

School of Computer Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.

Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia.

出版信息

BMC Bioinformatics. 2023 Sep 26;24(1):362. doi: 10.1186/s12859-023-05458-y.


DOI:10.1186/s12859-023-05458-y
PMID:37752445
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10521455/
Abstract

BACKGROUND: The central biological clock governs numerous facets of mammalian physiology, including sleep, metabolism, and immune system regulation. Understanding gene regulatory relationships is crucial for unravelling the mechanisms that underlie various cellular biological processes. While it is possible to infer circadian gene regulatory relationships from time-series gene expression data, relying solely on correlation-based inference may not provide sufficient information about causation. Moreover, gene expression data often have high dimensions but a limited number of observations, posing challenges in their analysis. METHODS: In this paper, we introduce a new hybrid framework, referred to as Circadian Gene Regulatory Framework (CGRF), to infer circadian gene regulatory relationships from gene expression data of rats. The framework addresses the challenges of high-dimensional data by combining the fuzzy C-means clustering algorithm with dynamic time warping distance. Through this approach, we efficiently identify the clusters of genes related to the target gene. To determine the significance of genes within a specific cluster, we employ the Wilcoxon signed-rank test. Subsequently, we use a dynamic vector autoregressive method to analyze the selected significant gene expression profiles and reveal directed causal regulatory relationships based on partial correlation. CONCLUSION: The proposed CGRF framework offers a comprehensive and efficient solution for understanding circadian gene regulation. Circadian gene regulatory relationships are inferred from the gene expression data of rats based on the Aanat target gene. The results show that genes Pde10a, Atp7b, Prok2, Per1, Rhobtb3 and Dclk1 stand out, which have been known to be essential for the regulation of circadian activity. The potential relationships between genes Tspan15, Eprs, Eml5 and Fsbp with a circadian rhythm need further experimental research.

摘要

背景:哺乳动物的生理机能包括睡眠、新陈代谢和免疫系统调节等,中央生物钟对这些机能都有调控作用。了解基因调控关系对于揭示各种细胞生物学过程的机制至关重要。虽然可以根据时间序列基因表达数据推断昼夜节律基因调控关系,但仅依赖相关性推断可能无法提供关于因果关系的充分信息。此外,基因表达数据通常具有较高的维度,但观察数量有限,这对其分析提出了挑战。

方法:在本文中,我们引入了一种新的混合框架,称为昼夜节律基因调控框架(CGRF),用于从大鼠的基因表达数据中推断昼夜节律基因调控关系。该框架通过将模糊 C 均值聚类算法与动态时间扭曲距离相结合,解决了高维数据的挑战。通过这种方法,我们可以有效地识别与目标基因相关的基因簇。为了确定特定簇内基因的显著性,我们采用了 Wilcoxon 符号秩检验。随后,我们使用动态向量自回归方法来分析所选显著基因表达谱,并根据偏相关揭示基于部分相关的有向因果调控关系。

结论:提出的 CGRF 框架为理解昼夜节律基因调控提供了一种全面而有效的解决方案。基于 Aanat 靶基因,从大鼠的基因表达数据中推断昼夜节律基因调控关系。结果表明,Pde10a、Atp7b、Prok2、Per1、Rhobtb3 和 Dclk1 等基因非常显著,这些基因已被证明对昼夜节律活动的调节至关重要。与昼夜节律相关的基因 Tspan15、Eprs、Eml5 和 Fsbp 之间的潜在关系需要进一步的实验研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/86018c04f4ec/12859_2023_5458_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/9ab754a3d9a1/12859_2023_5458_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/aa939ac208f2/12859_2023_5458_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/de4174d73a43/12859_2023_5458_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/1bf7489a17bd/12859_2023_5458_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/bbd1acd79e51/12859_2023_5458_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/00a52bd77085/12859_2023_5458_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/86018c04f4ec/12859_2023_5458_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/9ab754a3d9a1/12859_2023_5458_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/aa939ac208f2/12859_2023_5458_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/de4174d73a43/12859_2023_5458_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/1bf7489a17bd/12859_2023_5458_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/bbd1acd79e51/12859_2023_5458_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/00a52bd77085/12859_2023_5458_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269c/10521455/86018c04f4ec/12859_2023_5458_Fig7_HTML.jpg

相似文献

[1]
Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework.

BMC Bioinformatics. 2023-9-26

[2]
Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.

BMC Bioinformatics. 2008-4-21

[3]
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.

BMC Syst Biol. 2018-12-14

[4]
A network biology study on circadian rhythm by integrating various omics data.

OMICS. 2009-8

[5]
Bioinformatics analysis of transcriptional regulation of circadian genes in rat liver.

BMC Bioinformatics. 2014-3-25

[6]
Quantitative inference of dynamic regulatory pathways via microarray data.

BMC Bioinformatics. 2005-3-7

[7]
Mining for novel candidate clock genes in the circadian regulatory network.

BMC Syst Biol. 2015-11-14

[8]
MicroRNA-mediated regulation in the mammalian circadian rhythm.

J Theor Biol. 2012-4-8

[9]
Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology.

Physiol Genomics. 2010-8-3

[10]
Inference of gene pathways using mixture Bayesian networks.

BMC Syst Biol. 2009-5-19

引用本文的文献

[1]
GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data.

BMC Bioinformatics. 2025-4-18

[2]
Integrative analysis of ASXL family genes reveals ASXL2 as an immunoregulatory molecule in head and neck squamous cell carcinoma.

Sci Rep. 2024-12-28

本文引用的文献

[1]
Multiplexed Visualization Method to Explore Complete Targeting Regulatory Relationships Among Circadian Genes for Insomnia Treatment.

Front Neurosci. 2022-7-1

[2]
A novel approach GRNTSTE to reconstruct gene regulatory interactions applied to a case study for rat pineal rhythm gene.

Sci Rep. 2022-6-17

[3]
Spatial transmission network construction of influenza-like illness using dynamic Bayesian network and vector-autoregressive moving average model.

BMC Infect Dis. 2021-2-10

[4]
The role of circadian rhythm in the regulation of cellular protein profiles in the brain.

Turk J Med Sci. 2021-10

[5]
The characteristics and roles of β-TrCP1/2 in carcinogenesis.

FEBS J. 2021-6

[6]
Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data.

Nat Methods. 2020-1-6

[7]
Sleep-wake cycles drive daily dynamics of synaptic phosphorylation.

Science. 2019-10-11

[8]
Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit's Brain.

Front Endocrinol (Lausanne). 2018-3-15

[9]
Multilineage communication regulates human liver bud development from pluripotency.

Nature. 2017-6-14

[10]
The pineal gland: A model for adrenergic modulation of ubiquitin ligases.

PLoS One. 2017-2-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索