Suppr超能文献

CNN-Res:用于多模态 MRI 图像上急性缺血性卒中病灶分割的深度学习框架。

CNN-Res: deep learning framework for segmentation of acute ischemic stroke lesions on multimodal MRI images.

机构信息

Department of Software Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, East Azerbaijan, Iran.

Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

BMC Med Inform Decis Mak. 2023 Sep 26;23(1):192. doi: 10.1186/s12911-023-02289-y.

Abstract

BACKGROUND

Accurate segmentation of stroke lesions on MRI images is very important for neurologists in the planning of post-stroke care. Segmentation helps clinicians to better diagnose and evaluation of any treatment risks. However, manual segmentation of brain lesions relies on the experience of neurologists and is also a very tedious and time-consuming process. So, in this study, we proposed a novel deep convolutional neural network (CNN-Res) that automatically performs the segmentation of ischemic stroke lesions from multimodal MRIs.

METHODS

CNN-Res used a U-shaped structure, so the network has encryption and decryption paths. The residual units are embedded in the encoder path. In this model, to reduce gradient descent, the residual units were used, and to extract more complex information in images, multimodal MRI data were applied. In the link between the encryption and decryption subnets, the bottleneck strategy was used, which reduced the number of parameters and training time compared to similar research.

RESULTS

CNN-Res was evaluated on two distinct datasets. First, it was examined on a dataset collected from the Neuroscience Center of Tabriz University of Medical Sciences, where the average Dice coefficient was equal to 85.43%. Then, to compare the efficiency and performance of the model with other similar works, CNN-Res was evaluated on the popular SPES 2015 competition dataset where the average Dice coefficient was 79.23%.

CONCLUSION

This study presented a new and accurate method for the segmentation of MRI medical images using a deep convolutional neural network called CNN-Res, which directly predicts segment maps from raw input pixels.

摘要

背景

在为脑卒中患者制定后续护理方案时,对 MRI 图像中的脑卒中病灶进行准确分割对于神经科医生来说非常重要。分割有助于临床医生更好地诊断和评估任何治疗风险。然而,脑损伤的手动分割依赖于神经科医生的经验,而且也是一个非常繁琐和耗时的过程。因此,在这项研究中,我们提出了一种新的深度卷积神经网络(CNN-Res),可以自动对多模态 MRI 中的缺血性脑卒中病灶进行分割。

方法

CNN-Res 使用 U 形结构,因此网络具有加密和解密路径。残差单元嵌入在编码器路径中。在这个模型中,为了减少梯度下降,使用了残差单元,并应用了多模态 MRI 数据来提取图像中的更复杂信息。在加密和解密子网之间的连接中,使用了瓶颈策略,与类似的研究相比,该策略减少了参数数量和训练时间。

结果

CNN-Res 在两个不同的数据集上进行了评估。首先,在来自大不里士医科大学神经科学中心的数据集上进行了检查,平均 Dice 系数等于 85.43%。然后,为了将该模型的效率和性能与其他类似的工作进行比较,在流行的 SPES 2015 竞赛数据集上评估了 CNN-Res,平均 Dice 系数为 79.23%。

结论

本研究提出了一种新的、准确的基于深度卷积神经网络的 MRI 医学图像分割方法,称为 CNN-Res,它可以直接从原始输入像素预测分割图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1161/10521570/caf34c489f9b/12911_2023_2289_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验