Suppr超能文献

基于深度学习的多模态磁共振图像中少数完全标记对象的急性缺血性脑卒中病灶分割方法。

Deep Learning-Based Acute Ischemic Stroke Lesion Segmentation Method on Multimodal MR Images Using a Few Fully Labeled Subjects.

机构信息

Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.

Key Laboratory for Cerebral Artery and Neural Degeneration of Tianjin, Department of Medical Imaging, Tianjin Huanhu Hospital, Tianjin 300350, China.

出版信息

Comput Math Methods Med. 2021 Jan 29;2021:3628179. doi: 10.1155/2021/3628179. eCollection 2021.

Abstract

Acute ischemic stroke (AIS) has been a common threat to human health and may lead to severe outcomes without proper and prompt treatment. To precisely diagnose AIS, it is of paramount importance to quantitatively evaluate the AIS lesions. By adopting a convolutional neural network (CNN), many automatic methods for ischemic stroke lesion segmentation on magnetic resonance imaging (MRI) have been proposed. However, most CNN-based methods should be trained on a large amount of fully labeled subjects, and the label annotation is a labor-intensive and time-consuming task. Therefore, in this paper, we propose to use a mixture of many weakly labeled and a few fully labeled subjects to relieve the thirst of fully labeled subjects. In particular, a multifeature map fusion network (MFMF-Network) with two branches is proposed, where hundreds of weakly labeled subjects are used to train the classification branch, and several fully labeled subjects are adopted to tune the segmentation branch. By training on 398 weakly labeled and 5 fully labeled subjects, the proposed method is able to achieve a mean dice coefficient of 0.699 ± 0.128 on a test set with 179 subjects. The lesion-wise and subject-wise metrics are also evaluated, where a lesion-wise F1 score of 0.886 and a subject-wise detection rate of 1 are achieved.

摘要

急性缺血性脑卒中(AIS)一直是人类健康的常见威胁,如果没有适当和及时的治疗,可能会导致严重后果。为了准确诊断 AIS,定量评估 AIS 病变至关重要。通过采用卷积神经网络(CNN),已经提出了许多基于 MRI 的缺血性脑卒中病变分割的自动方法。然而,大多数基于 CNN 的方法都需要在大量完全标记的对象上进行训练,而标签注释是一项劳动密集型且耗时的任务。因此,在本文中,我们提出使用大量弱标记和少量完全标记的受试者的混合物来缓解对完全标记的受试者的需求。具体来说,提出了一种具有两个分支的多特征图融合网络(MFMF-Network),其中使用数百个弱标记的受试者来训练分类分支,采用几个完全标记的受试者来调整分割分支。通过对 398 个弱标记和 5 个完全标记的受试者进行训练,所提出的方法能够在具有 179 个受试者的测试集上实现 0.699±0.128 的平均骰子系数。还评估了病变和受试者的指标,其中病变的 F1 分数为 0.886,受试者的检测率为 1。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d86/7867461/e4c42f7d627e/CMMM2021-3628179.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验