Suppr超能文献

MRI 指标病变放射组学和机器学习在检测疾病的前列腺外扩展中的应用:一项多中心研究。

MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study.

机构信息

Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.

Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy.

出版信息

Eur Radiol. 2021 Oct;31(10):7575-7583. doi: 10.1007/s00330-021-07856-3. Epub 2021 Apr 1.

Abstract

OBJECTIVES

To build a machine learning (ML) model to detect extraprostatic extension (EPE) of prostate cancer (PCa), based on radiomics features extracted from prostate MRI index lesions.

METHODS

Consecutive MRI exams of patients undergoing radical prostatectomy for PCa were retrospectively collected from three institutions. Axial T2-weighted and apparent diffusion coefficient map images were annotated to obtain index lesion volumes of interest for radiomics feature extraction. Data from one institution was used for training, feature selection (using reproducibility, variance and pairwise correlation analyses, and a correlation-based subset evaluator), and tuning of a support vector machine (SVM) algorithm, with stratified 10-fold cross-validation. The model was tested on the two remaining institutions' data and compared with a baseline reference and expert radiologist assessment of EPE.

RESULTS

In total, 193 patients were included. From an initial dataset of 2436 features, 2287 were excluded due to either poor stability, low variance, or high collinearity. Among the remaining, 14 features were used to train the ML model, which reached an overall accuracy of 83% in the training set. In the two external test sets, the SVM achieved an accuracy of 79% and 74% respectively, not statistically different from that of the radiologist (81-83%, p = 0.39-1) and outperforming the baseline reference (p = 0.001-0.02).

CONCLUSIONS

A ML model solely based on radiomics features demonstrated high accuracy for EPE detection and good generalizability in a multicenter setting. Paired to qualitative EPE assessment, this approach could aid radiologists in this challenging task.

KEY POINTS

• Predicting the presence of EPE in prostate cancer patients is a challenging task for radiologists. • A support vector machine algorithm achieved high diagnostic accuracy for EPE detection, with good generalizability when tested on multiple external datasets. • The performance of the algorithm was not significantly different from that of an experienced radiologist.

摘要

目的

基于从前列腺 MRI 指数病变中提取的放射组学特征,构建一种用于检测前列腺癌(PCa)前列腺外延伸(EPE)的机器学习(ML)模型。

方法

回顾性收集了来自三个机构的因 PCa 而行根治性前列腺切除术的患者的连续 MRI 检查。对轴向 T2 加权和表观扩散系数图图像进行注释,以获得放射组学特征提取的感兴趣的指数病变体积。来自一个机构的数据用于训练、特征选择(使用可重复性、方差和成对相关性分析以及基于相关性的子集评估器)和支持向量机(SVM)算法的调整,采用分层 10 折交叉验证。该模型在另外两个机构的数据上进行测试,并与基线参考和专家放射科医生对 EPE 的评估进行比较。

结果

共纳入 193 例患者。在一个初始的 2436 个特征数据集,有 2287 个特征因稳定性差、方差低或相关性高而被排除。在剩下的特征中,有 14 个特征用于训练 ML 模型,该模型在训练集中的总体准确率为 83%。在两个外部测试集中,SVM 的准确率分别为 79%和 74%,与放射科医生(81-83%,p=0.39-1)的准确率无统计学差异,且优于基线参考(p=0.001-0.02)。

结论

仅基于放射组学特征的 ML 模型在多中心环境中对 EPE 检测具有较高的准确性和良好的泛化能力。与定性 EPE 评估相结合,这种方法可以帮助放射科医生完成这项具有挑战性的任务。

关键点

  1. 预测前列腺癌患者 EPE 的存在对放射科医生来说是一项具有挑战性的任务。

  2. SVM 算法对 EPE 检测具有较高的诊断准确性,在多个外部数据集上进行测试时具有良好的泛化能力。

  3. 该算法的性能与经验丰富的放射科医生没有显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ca/8452573/c2634e271462/330_2021_7856_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验