Suppr超能文献

基于多模态磁共振成像的急性和亚急性中风病灶分割

Acute and sub-acute stroke lesion segmentation from multimodal MRI.

作者信息

Clèrigues Albert, Valverde Sergi, Bernal Jose, Freixenet Jordi, Oliver Arnau, Lladó Xavier

机构信息

Institute of Computer Vision and Robotics, University of Girona, P-IV, Campus Montilivi, 17003 Girona Spain.

Institute of Computer Vision and Robotics, University of Girona, P-IV, Campus Montilivi, 17003 Girona Spain.

出版信息

Comput Methods Programs Biomed. 2020 Oct;194:105521. doi: 10.1016/j.cmpb.2020.105521. Epub 2020 May 6.

Abstract

BACKGROUND AND OBJECTIVE

Acute stroke lesion segmentation tasks are of great clinical interest as they can help doctors make better informed time-critical treatment decisions. Magnetic resonance imaging (MRI) is time demanding but can provide images that are considered the gold standard for diagnosis. Automated stroke lesion segmentation can provide with an estimate of the location and volume of the lesioned tissue, which can help in the clinical practice to better assess and evaluate the risks of each treatment.

METHODS

We propose a deep learning methodology for acute and sub-acute stroke lesion segmentation using multimodal MR imaging. We pre-process the data to facilitate learning features based on the symmetry of brain hemispheres. The issue of class imbalance is tackled using small patches with a balanced training patch sampling strategy and a dynamically weighted loss function. Moreover, a combination of whole patch predictions, using a U-Net based CNN architecture, and high degree of overlapping patches reduces the need for additional post-processing.

RESULTS

The proposed method is evaluated using two public datasets from the 2015 Ischemic Stroke Lesion Segmentation challenge (ISLES 2015). These involve the tasks of sub-acute stroke lesion segmentation (SISS) and acute stroke penumbra estimation (SPES) from multiple diffusion, perfusion and anatomical MRI modalities. The performance is compared against state-of-the-art methods with a blind online testing set evaluation on each of the challenges. At the time of submitting this manuscript, our approach is the first method in the online rankings for the SISS (DSC=0.59 ± 0.31) and SPES sub-tasks (DSC=0.84 ± 0.10). When compared with the rest of submitted strategies, we achieve top rank performance with a lower Hausdorff distance.

CONCLUSIONS

Better segmentation results are obtained by leveraging the anatomy and pathophysiology of acute stroke lesions and using a combined approach to minimize the effects of class imbalance. The same training procedure is used for both tasks, showing the proposed methodology can generalize well enough to deal with different unrelated tasks and imaging modalities without hyper-parameter tuning. In order to promote the reproducibility of our results, a public version of the proposed method has been released to the scientific community.

摘要

背景与目的

急性中风病灶分割任务具有重大临床意义,因为它有助于医生在时间紧迫的情况下做出更明智的治疗决策。磁共振成像(MRI)耗时较长,但能提供被视为诊断金标准的图像。自动中风病灶分割可提供病变组织位置和体积的估计值,有助于临床实践更好地评估和评估每种治疗的风险。

方法

我们提出一种利用多模态磁共振成像进行急性和亚急性中风病灶分割的深度学习方法。我们对数据进行预处理,以便基于脑半球对称性学习特征。使用具有平衡训练补丁采样策略和动态加权损失函数的小补丁来解决类别不平衡问题。此外,基于U-Net的卷积神经网络架构的全补丁预测与高度重叠补丁的组合减少了额外后处理的需求。

结果

使用来自2015年缺血性中风病灶分割挑战赛(ISLES 2015)的两个公共数据集对所提出的方法进行评估。这些任务包括来自多个扩散、灌注和解剖MRI模态的亚急性中风病灶分割(SISS)和急性中风半暗带估计(SPES)。在每个挑战中,将性能与最先进的方法进行比较,并通过盲态在线测试集评估。在提交本手稿时,我们的方法在SISS(DSC = 0.59 ± 0.31)和SPES子任务(DSC = 0.84 ± 0.10)的在线排名中是第一种方法。与其他提交的策略相比,我们以更低的豪斯多夫距离取得了顶级性能。

结论

通过利用急性中风病灶的解剖结构和病理生理学,并采用组合方法来最小化类别不平衡的影响,可获得更好的分割结果。两个任务使用相同的训练过程,表明所提出的方法具有足够的通用性,无需超参数调整即可处理不同的不相关任务和成像模态。为了促进我们结果的可重复性,已向科学界发布了所提出方法的公开版本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验