Gómez Didier, Acosta Jorge, López-Sandoval Horacio, Torres-Palma Ricardo A, Ávila-Torres Yenny
Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira 660003, Colombia.
Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, C.U., Coyoacán, México City 04510, Mexico.
Biomimetics (Basel). 2023 Sep 13;8(5):423. doi: 10.3390/biomimetics8050423.
This study focuses on developing and evaluating two novel enantioselective biomimetic models for the active centers of oxidases (ascorbate oxidase and catalase). These models aim to serve as alternatives to enzymes, which often have limited action and a delicate nature. For the ascorbate oxidase (AO) model (compound ), two enantiomers, S,S(+)cpse and R,R(-)cpse, were combined in a crystalline structure, resulting in a racemic compound. The analysis of their magnetic properties and electrochemical behavior revealed electronic transfer between six metal centers. Compound effectively catalyzed the oxidation of ascorbic to dehydroascorbic acid, showing a 45.5% yield for the racemic form. This was notably higher than the enantiopure compounds synthesized previously and tested in the current report, which exhibited yields of 32% and 28% for the S,S(+)cpse and R,R(-)cpse enantiomers, respectively. This outcome highlights the influence of electronic interactions between metal ions in the racemic compound compared to pure enantiomers. On the other hand, for the catalase model (compound ), both the compound and its enantiomer displayed polymeric properties and dimeric behavior in the solid and solution states, respectively. Compound proved to be effective in catalyzing the oxidation of hydrogen peroxide to oxygen with a yield of 64.7%. In contrast, its enantiomer (with R,R(-)cpse) achieved only a 27% yield. This further validates the functional nature of the prepared biomimetic models for oxidases. This research underscores the importance of understanding and designing biomimetic models of metalloenzyme active centers for both biological and industrial applications. These models show promising potential as viable alternatives to natural enzymes in various processes.
本研究聚焦于开发和评估两种用于氧化酶(抗坏血酸氧化酶和过氧化氢酶)活性中心的新型对映选择性仿生模型。这些模型旨在作为酶的替代品,因为酶通常作用有限且性质脆弱。对于抗坏血酸氧化酶(AO)模型(化合物 ),两种对映体,S,S(+)cpse和R,R(-)cpse,在晶体结构中结合,形成了一种外消旋化合物。对其磁性性质和电化学行为的分析揭示了六个金属中心之间的电子转移。化合物 有效地催化了抗坏血酸氧化为脱氢抗坏血酸,外消旋形式的产率为45.5%。这明显高于先前合成并在本报告中测试的对映纯化合物,S,S(+)cpse和R,R(-)cpse对映体的产率分别为32%和28%。这一结果突出了外消旋化合物中金属离子之间电子相互作用相对于纯对映体的影响。另一方面,对于过氧化氢酶模型(化合物 ),该化合物及其对映体在固态和溶液态分别表现出聚合性质和二聚行为。化合物 被证明能有效地催化过氧化氢氧化为氧气,产率为64.7%。相比之下,其对映体(具有R,R(-)cpse)的产率仅为27%。这进一步验证了所制备的氧化酶仿生模型的功能性质。本研究强调了理解和设计金属酶活性中心的仿生模型对于生物和工业应用的重要性。这些模型在各种过程中作为天然酶的可行替代品显示出有前景的潜力。