Ayad Camille, Libeau Pierre, Lacroix-Gimon Céline, Ladavière Catherine, Verrier Bernard
UMR 5305: Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France.
UMR 5223: Ingénierie des Matériaux Polymères, CNRS/Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, Bâtiment POLYTECH, 15 bd André Latarjet, CEDEX, 69622 Villeurbanne, France.
Pharmaceutics. 2021 Mar 12;13(3):377. doi: 10.3390/pharmaceutics13030377.
The approval of two mRNA vaccines as urgent prophylactic treatments against Covid-19 made them a realistic alternative to conventional vaccination methods. However, naked mRNA is rapidly degraded by the body and cannot effectively penetrate cells. Vectors capable of addressing these issues while allowing endosomal escape are therefore needed. To date, the most widely used vectors for this purpose have been lipid-based vectors. Thus, we have designed an innovative vector called LipoParticles (LP) consisting of poly(lactic) acid (PLA) nanoparticles coated with a 15/85 mol/mol DSPC/DOTAP lipid membrane. An in vitro investigation was carried out to examine whether the incorporation of a solid core offered added value compared to liposomes alone. To that end, a formulation strategy that we have named particulate layer-by-layer (pLbL) was used. This method permitted the adsorption of nucleic acids on the surface of LP (mainly by means of electrostatic interactions through the addition of LAH4-L1 peptide), allowing both cellular penetration and endosomal escape. After a thorough characterization of size, size distribution, and surface charge- and a complexation assessment of each vector-their transfection capacity and cytotoxicity (on antigenic presenting cells, namely DC2.4, and epithelial HeLa cells) were compared. LP have been shown to be significantly better transfecting agents than liposomes through pLbL formulation on both HeLa and DC 2.4 cells. These data illustrate the added value of a solid particulate core inside a lipid membrane, which is expected to rigidify the final assemblies and makes them less prone to early loss of mRNA. In addition, this assembly promoted not only efficient delivery of mRNA, but also of plasmid DNA, making it a versatile nucleic acid carrier that could be used for various vaccine applications. Finally, if the addition of the LAH4-L1 peptide systematically leads to toxicity of the pLbL formulation on DC 2.4 cells, the optimization of the nucleic acid/LAH4-L1 peptide mass ratio becomes an interesting strategy-essentially reducing the peptide intake to limit its cytotoxicity while maintaining a relevant transfection efficiency.
两种mRNA疫苗被批准作为针对新冠病毒的紧急预防性治疗方法,这使它们成为传统疫苗接种方法的现实替代方案。然而,裸露的mRNA会被身体迅速降解,且无法有效穿透细胞。因此,需要一种能够解决这些问题并实现内体逃逸的载体。迄今为止,为此目的最广泛使用的载体是脂质载体。因此,我们设计了一种名为脂质颗粒(LP)的创新载体,它由聚乳酸(PLA)纳米颗粒组成,表面包裹着15/85摩尔/摩尔的二硬脂酰磷脂酰胆碱/二油酰基三甲基氯化铵脂质膜。进行了一项体外研究,以检查与单独的脂质体相比,加入固体核心是否具有附加价值。为此,使用了一种我们称为颗粒逐层(pLbL)的制剂策略。该方法允许核酸吸附在LP表面(主要通过添加LAH4-L1肽的静电相互作用),从而实现细胞穿透和内体逃逸。在对每种载体的大小、大小分布、表面电荷进行全面表征以及进行络合评估后,比较了它们的转染能力和细胞毒性(对抗抗原呈递细胞,即DC2.4细胞和上皮性HeLa细胞)。通过pLbL制剂,LP已被证明在HeLa细胞和DC 2.4细胞上都是比脂质体显著更好的转染剂。这些数据说明了脂质膜内固体颗粒核心的附加价值,预计这会使最终组装体变硬,使其不太容易过早失去mRNA。此外,这种组装不仅促进了mRNA的有效递送,也促进了质粒DNA的有效递送,使其成为一种通用的核酸载体,可用于各种疫苗应用。最后,如果添加LAH4-L1肽会系统性地导致pLbL制剂对DC 2.4细胞产生毒性,那么优化核酸/LAH4-L1肽的质量比就成为一种有趣的策略——基本上是减少肽的摄入量以限制其细胞毒性,同时保持相关的转染效率。