UMMISCO, Sorbonne Université, Paris, France.
Eco-Evolution Mathématique, IBENS, CNRS UMR-8197, Ecole Normale Supérieure, Paris, France.
Sci Adv. 2023 Sep 29;9(39):eadf7202. doi: 10.1126/sciadv.adf7202. Epub 2023 Sep 27.
Identifying climate drivers is essential to understand and predict epidemics of mosquito-borne infections whose population dynamics typically exhibit seasonality and multiannual cycles. Which climate covariates to consider varies across studies, from local factors such as temperature to remote drivers such as the El Niño-Southern Oscillation. With partial wavelet coherence, we present a systematic investigation of nonstationary associations between mosquito-borne disease incidence and a given climate factor while controlling for another. Analysis of almost 200 time series of dengue and malaria around the globe at different geographical scales shows a systematic effect of global climate drivers on interannual variability and of local ones on seasonality. This clear separation of time scales of action enhances detection of climate drivers and indicates those best suited for building early-warning systems.
确定气候驱动因素对于理解和预测蚊媒传染病的流行至关重要,因为这些传染病的种群动态通常具有季节性和多年周期。考虑哪些气候协变量因研究而异,从温度等局部因素到厄尔尼诺-南方涛动等远程驱动因素。使用部分小波相干性,我们在控制另一个因素的同时,对蚊媒疾病发病率与给定气候因素之间的非平稳关联进行了系统研究。对全球不同地理尺度的近 200 个登革热和疟疾时间序列的分析表明,全球气候驱动因素对年际变异性有系统影响,而地方因素对季节性有系统影响。这种作用时间尺度的清晰分离增强了对气候驱动因素的检测,并表明了最适合建立预警系统的因素。