Suppr超能文献

氧化型低密度脂蛋白积累通过将转录从 HIF-1α 转移到 Nrf2 途径来抑制糖酵解并减弱巨噬细胞炎症反应。

Oxidized Low-Density Lipoprotein Accumulation Suppresses Glycolysis and Attenuates the Macrophage Inflammatory Response by Diverting Transcription from the HIF-1α to the Nrf2 Pathway.

机构信息

Department of Immunology, University of Toronto, Toronto, Ontario, Canada.

Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.

出版信息

J Immunol. 2023 Nov 15;211(10):1561-1577. doi: 10.4049/jimmunol.2300293.

Abstract

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.

摘要

巨噬细胞(Mφs)中的脂质积累是动脉粥样硬化的一个标志,但脂质积累如何通过重排 Mφ 代谢来影响炎症反应,人们对此知之甚少。我们在培养的野生型小鼠巯基乙酸酯诱导的腹腔 Mφs 和骨髓来源的 Mφs 中模拟了脂质积累,这些 Mφs 存在条件性(Lyz2-Cre)或完全缺失 Vhl、Hif1a、Nos2 和 Nfe2l2 的基因。转染研究采用 RAW264.7 细胞。用氧化低密度脂蛋白(oxLDL)或胆固醇培养 Mφs 24 小时,然后用 LPS 刺激。转录组学研究表明,oxLDL 在 Mφs 中的积累下调了炎症、缺氧和胆固醇代谢途径,而上调了抗氧化途径、脂肪酸氧化和 ABC 家族蛋白。代谢组学和细胞外代谢通量测定显示,oxLDL 积累抑制了 LPS 诱导的糖酵解。Mφs 内的细胞内脂质积累通过降低缺氧诱导因子 1-α(HIF-1α)的稳定性和转录激活能力来抑制 LPS 诱导的炎症,因此在 Vhl-/- Mφs 中该表型无法得到挽救。Mφs 内的细胞内脂质积累也增强了 LPS 诱导的 NF 红细胞 2 相关因子 2(Nrf2)介导的抗氧化防御,使 HIF-1α 不稳定,而 Nrf2 缺陷型 Mφs 抵抗脂质积累对糖酵解和炎症基因表达的抑制作用。此外,oxLDL 将 NADPH 的消耗从 HIF-1α 转移到 Nrf2 调节的脱辅基酶。因此,我们假设,将 NADPH 的消耗从 HIF-1α 重定向到 Nrf2 转录途径,对于调节富含细胞内脂质的 Mφs 中的炎症反应至关重要。我们的体外模型的相关性通过比较转录组分析得到了确立,该分析表明,用 oxLDL 培养并用 LPS 刺激的 Mφs 与从动脉粥样硬化小鼠和人类主动脉衍生的泡沫 Mφs 具有相似的炎症和代谢特征。

相似文献

7
Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells.
Redox Biol. 2019 Jun;24:101210. doi: 10.1016/j.redox.2019.101210. Epub 2019 May 2.
10
Antioxidant signaling via Nrf2 counteracts lipopolysaccharide-mediated inflammatory responses in foam cell macrophages.
Free Radic Biol Med. 2011 May 15;50(10):1382-91. doi: 10.1016/j.freeradbiomed.2011.02.036. Epub 2011 Mar 5.

引用本文的文献

1
Bioinformatic analysis identifies LPL as a critical gene in diabetic kidney disease via lipoprotein metabolism.
Front Endocrinol (Lausanne). 2025 Jul 17;16:1620032. doi: 10.3389/fendo.2025.1620032. eCollection 2025.
5
Can the reprogrammed cancer cells serve as an alternative source of (induced) cancer stem cells?
Rep Pract Oncol Radiother. 2024 Dec 4;29(5):651-656. doi: 10.5603/rpor.102821. eCollection 2024.
6
Measuring the rate of NADPH consumption by glutathione reductase in the cytosol and mitochondria.
PLoS One. 2024 Dec 5;19(12):e0309886. doi: 10.1371/journal.pone.0309886. eCollection 2024.
7
Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution.
Cell Rep. 2024 Nov 26;43(11):114911. doi: 10.1016/j.celrep.2024.114911. Epub 2024 Oct 28.
8
Investigating the regulatory mechanism of glucose metabolism by ubiquitin-like protein MNSFβ.
Mol Biol Rep. 2024 Oct 15;51(1):1053. doi: 10.1007/s11033-024-10009-6.
9
Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism.
Front Cell Infect Microbiol. 2024 Jul 25;14:1403915. doi: 10.3389/fcimb.2024.1403915. eCollection 2024.
10
John Yudkin's hypothesis: sugar is a major dietary culprit in the development of cardiovascular disease.
Front Nutr. 2024 Jul 4;11:1407108. doi: 10.3389/fnut.2024.1407108. eCollection 2024.

本文引用的文献

1
Targeting Apollo-NADP to Image NADPH Generation in Pancreatic Beta-Cell Organelles.
ACS Sens. 2022 Nov 25;7(11):3308-3317. doi: 10.1021/acssensors.2c01174. Epub 2022 Oct 21.
4
Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis.
Front Immunol. 2022 Mar 21;13:868958. doi: 10.3389/fimmu.2022.868958. eCollection 2022.
5
Radiation Impacts Early Atherosclerosis by Suppressing Intimal LDL Accumulation.
Circ Res. 2021 Feb 19;128(4):530-543. doi: 10.1161/CIRCRESAHA.119.316539. Epub 2021 Jan 5.
6
Mitochondrial Glutathione: Recent Insights and Role in Disease.
Antioxidants (Basel). 2020 Sep 24;9(10):909. doi: 10.3390/antiox9100909.
7
The Role of HIF in Immunity and Inflammation.
Cell Metab. 2020 Oct 6;32(4):524-536. doi: 10.1016/j.cmet.2020.08.002. Epub 2020 Aug 26.
8
The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway.
Mol Cell Biol. 2020 Jun 15;40(13). doi: 10.1128/MCB.00099-20.
9
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism.
Genes Dev. 2020 Mar 1;34(5-6):321-340. doi: 10.1101/gad.334284.119. Epub 2020 Feb 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验