Suppr超能文献

PKDN:支气管镜诊断的先验知识提取网络。

PKDN: Prior Knowledge Distillation Network for bronchoscopy diagnosis.

机构信息

Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

Department of Endoscope, Harbin Medical University Cancer Hospital, Harbin 150040, China.

出版信息

Comput Biol Med. 2023 Nov;166:107486. doi: 10.1016/j.compbiomed.2023.107486. Epub 2023 Sep 18.

Abstract

Bronchoscopy plays a crucial role in diagnosing and treating lung diseases. The deep learning-based diagnostic system for bronchoscopic images can assist physicians in accurately and efficiently diagnosing lung diseases, enabling patients to undergo timely pathological examinations and receive appropriate treatment. However, the existing diagnostic methods overlook the utilization of prior knowledge of medical images, and the limited feature extraction capability hinders precise focus on lesion regions, consequently affecting the overall diagnostic effectiveness. To address these challenges, this paper proposes a prior knowledge distillation network (PKDN) for identifying lung diseases through bronchoscopic images. The proposed method extracts color and edge features from lesion images using the prior knowledge guidance module, and subsequently enhances spatial and channel features by employing the dynamic spatial attention module and gated channel attention module, respectively. Finally, the extracted features undergo refinement and self-regulation through feature distillation. Furthermore, decoupled distillation is implemented to balance the importance of target and non-target class distillation, thereby enhancing the diagnostic performance of the network. The effectiveness of the proposed method is validated on the bronchoscopic dataset provided by Harbin Medical University Cancer Hospital, which consists of 2,029 bronchoscopic images from 200 patients. Experimental results demonstrate that the proposed method achieves an accuracy of 94.78% and an AUC of 98.17%, outperforming other methods significantly in diagnostic performance. These results indicate that the computer-aided diagnostic system based on PKDN provides satisfactory accuracy in diagnosing lung diseases during bronchoscopy.

摘要

支气管镜检查在诊断和治疗肺部疾病方面发挥着关键作用。基于深度学习的支气管镜图像诊断系统可以帮助医生准确、高效地诊断肺部疾病,使患者能够及时进行病理检查并接受适当的治疗。然而,现有的诊断方法忽略了对医学图像先验知识的利用,同时有限的特征提取能力也阻碍了对病变区域的精确关注,从而影响了整体诊断效果。针对这些挑战,本文提出了一种基于先验知识蒸馏网络(PKDN)的支气管镜图像肺病识别方法。该方法使用先验知识指导模块从病变图像中提取颜色和边缘特征,然后分别使用动态空间注意力模块和门控通道注意力模块增强空间和通道特征。最后,通过特征蒸馏对提取的特征进行细化和自我调节。此外,还实现了解耦蒸馏,以平衡目标类和非目标类蒸馏的重要性,从而提高了网络的诊断性能。在哈尔滨医科大学附属肿瘤医院提供的支气管镜数据集上验证了所提出方法的有效性,该数据集包含 200 名患者的 2029 张支气管镜图像。实验结果表明,所提出的方法在诊断性能方面的准确率达到 94.78%,AUC 达到 98.17%,显著优于其他方法。这些结果表明,基于 PKDN 的计算机辅助诊断系统在支气管镜检查中对肺部疾病的诊断具有令人满意的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验