Suppr超能文献

将人工智能整合到支气管镜检查和支气管内超声(EBUS)中用于肺癌诊断和分期:一项综述。

Integrating Artificial Intelligence in Bronchoscopy and Endobronchial Ultrasound (EBUS) for Lung Cancer Diagnosis and Staging: A Comprehensive Review.

作者信息

Winiarski Sebastian, Radziszewski Marcin, Wiśniewski Maciej, Cisek Jakub, Wąsowski Dariusz, Plewczyński Dariusz, Górska Katarzyna, Korczyński Piotr

机构信息

Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland.

Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland.

出版信息

Cancers (Basel). 2025 Aug 29;17(17):2835. doi: 10.3390/cancers17172835.

Abstract

Artificial intelligence (AI) is increasingly investigated as a potential adjunct in the diagnosis and staging of lung cancer, particularly through integration with bronchoscopy and endobronchial ultrasound (EBUS). Deep learning models have been applied to modalities such as white-light imaging, autofluorescence bronchoscopy, and spectroscopy, with the aim of assisting lesion detection, standardizing interpretation, and reducing interobserver variability. AI has also been explored in EBUS for lymph node assessment and guidance of transbronchial needle aspiration (EBUS-TBNA), with preliminary studies suggesting possible improvements in diagnostic yield. However, current evidence remains largely confined to small, retrospective, single-center datasets, often reporting performance under idealized conditions. External validation is rare, reproducibility is undermined by a lack of data and code availability, and workflow integration into real-world bronchoscopy practice has not been demonstrated. As such, most systems should still be regarded as experimental. Translating AI into routine thoracic oncology will require large-scale, prospective, multicenter validation studies, greater data transparency, and careful evaluation of cost-effectiveness, regulatory approval, and clinical utility.

摘要

人工智能(AI)作为肺癌诊断和分期的潜在辅助手段正受到越来越多的研究,特别是通过与支气管镜检查和支气管内超声(EBUS)相结合。深度学习模型已应用于白光成像、自发荧光支气管镜检查和光谱学等模式,旨在协助病变检测、规范解读并减少观察者间的差异。人工智能也已在EBUS中用于淋巴结评估和经支气管针吸活检(EBUS-TBNA)的引导,初步研究表明诊断率可能有所提高。然而,目前的证据在很大程度上仍局限于小型、回顾性、单中心数据集,且常常是在理想化条件下报告性能。外部验证很少见,由于缺乏数据和代码可用性,再现性受到影响,并且尚未证明能将工作流程整合到实际的支气管镜检查实践中。因此,大多数系统仍应被视为实验性的。将人工智能转化为常规胸科肿瘤学需要大规模、前瞻性、多中心验证研究、更高的数据透明度,以及对成本效益、监管批准和临床实用性的仔细评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4bd/12427279/4391787f5e03/cancers-17-02835-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验