人工智能在超声心动图中对左心室射血分数的评估改善:与心脏磁共振成像的对比分析。

Improved assessment of left ventricular ejection fraction using artificial intelligence in echocardiography: A comparative analysis with cardiac magnetic resonance imaging.

机构信息

Department of Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden, Fetscherstr. 76, Dresden 01307, Germany.

Department of Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden, Fetscherstr. 76, Dresden 01307, Germany.

出版信息

Int J Cardiol. 2024 Jan 1;394:131383. doi: 10.1016/j.ijcard.2023.131383. Epub 2023 Sep 26.

Abstract

BACKGROUND

Left ventricular ejection fraction (LVEF) measurement in echocardiography (Echo) using the recommended modified biplane Simpson (MBS) method is operator-dependent and exhibits variability. We aimed to assess the accuracy of a novel fully automated (Auto) artificial intelligence (AI) in view selection and biplane LVEF calculation compared to MBS-Echo, with cardiac magnetic resonance imaging (CMR) as reference.

METHODS

Each of the 301 consecutive patients underwent CMR and Echo on the same day. LVEF was measured independently by Auto-Echo, MBS-Echo and CMR. Interobserver (n = 40) and test-retest (n = 14) analysis followed.

RESULTS

A total of 229 patients (76%) underwent complete analysis. Auto-Echo and MBS-Echo showed high correlations with CMR (R = 0.89 and 0.89) and with each other (R = 0.93). Auto underestimated LVEF (bias: 2.2%; limits of agreement [LOA]: -13.5 to 17.9%), while MBS overestimated it (bias: -2.2%; LOA: 18.6 to 14.1%). Despite comparable areas under the curves of Auto- and MBS-Echo (0.93 and 0.92), 46% (n = 70) of MBS-Echo misclassified LVEF by ≥5% units in patients with a reduced CMR-LVEF <51%. Although LVEF bias variability across different LV function ranges was significant (p < 0.001), Auto-Echo was closer to CMR for patients with reduced LVEF, wall motion abnormalities, and poor image quality than MBS-Echo. The interobserver correlation coefficient of Auto-Echo was excellent compared to MBS-Echo (1.00 vs. <0.91) for different readers. True test-retest variability was higher for MBS-Echo than for Auto-Echo (7.9% vs. 2.5%).

CONCLUSION

The tested AI has the potential to improve the clinical utility of Echo by reducing user-related variability, providing more accurate and reliable results than MBS.

摘要

背景

超声心动图(Echo)中使用推荐的改良双平面 Simpson(MBS)法测量左心室射血分数(LVEF)依赖于操作者,并且存在变异性。我们旨在评估一种新型全自动(Auto)人工智能(AI)在视窗选择和双平面 LVEF 计算方面的准确性,与心脏磁共振成像(CMR)作为参考。

方法

301 例连续患者均于同一天行 CMR 和 Echo 检查。由 Auto-Echo、MBS-Echo 和 CMR 独立测量 LVEF。随后进行了观察者间(n=40)和复测(n=14)分析。

结果

共 229 例患者(76%)完成了完整分析。Auto-Echo 和 MBS-Echo 与 CMR 呈高度相关(R=0.89 和 0.89),且彼此之间也呈高度相关(R=0.93)。Auto 低估了 LVEF(偏倚:2.2%;一致性界限 [LOA]:-13.5 至 17.9%),而 MBS 高估了 LVEF(偏倚:-2.2%;LOA:18.6 至 14.1%)。尽管 Auto-Echo 和 MBS-Echo 的曲线下面积相当(0.93 和 0.92),但在 CMR-LVEF<51%的患者中,46%(n=70)的 MBS-Echo 将 LVEF 错误分类≥5%。尽管在不同的左心室功能范围内,LVEF 偏倚的变异性具有显著性(p<0.001),但 Auto-Echo 在 LVEF 降低、壁运动异常和图像质量较差的患者中比 MBS-Echo 更接近 CMR。与 MBS-Echo 相比,Auto-Echo 的观察者间相关系数极好(1.00 与<0.91)。MBS-Echo 的真实复测变异性高于 Auto-Echo(7.9% 与 2.5%)。

结论

该测试的 AI 具有通过减少与用户相关的变异性来提高 Echo 临床实用性的潜力,提供比 MBS 更准确和可靠的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索