Brownell Nicholas, Kay Chad, Parra David, Anderson Shawn, Ballister Briana, Cave Brandon, Conn Jessica, Dev Sandesh, Kaiser Stephanie, ROGERs Jennifer, Touloupas Anna Drew, Verbosky Natalie, Yassa Nardine-Mary, Young Emily, Ziaeian Boback
Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA.
VA Pharmacy Benefits Management Academic Detailing Services, Hines, IL.
J Card Fail. 2024 Mar;30(3):452-459. doi: 10.1016/j.cardfail.2023.08.024. Epub 2023 Sep 25.
In 2020, the Veterans Affairs (VA) health care system deployed a heart failure (HF) dashboard for use nationally. The initial version was notably imprecise and unreliable for the identification of HF subtypes. We describe the development and subsequent optimization of the VA national HF dashboard.
This study describes the stepwise process for improving the accuracy of the VA national HF dashboard, including defining the initial dashboard, improving case definitions, using natural language processing for patient identification, and incorporating an imaging-quality hierarchy model. Optimization further included evaluating whether to require concurrent ICD-codes for inclusion in the dashboard and assessing various imaging modalities for patient characterization.
Through multiple rounds of optimization, the dashboard accuracy (defined as the proportion of true results to the total population) was improved from 54.1% to 89.2% for the identification of HF with reduced ejection fraction (HFrEF) and from 53.9% to 88.0% for the identification of HF with preserved ejection fraction (HFpEF). To align with current guidelines, HF with mildly reduced ejection fraction (HFmrEF) was added to the dashboard output with 88.0% accuracy.
The inclusion of an imaging-quality hierarchy model and natural-language processing algorithm improved the accuracy of the VA national HF dashboard. The revised dashboard informatics algorithm has higher use rates and improved reliability for the health management of the population.
2020年,美国退伍军人事务部(VA)医疗保健系统在全国范围内部署了心力衰竭(HF)仪表盘。其初始版本在识别HF亚型方面明显不准确且不可靠。我们描述了VA国家HF仪表盘的开发及后续优化过程。
本研究描述了提高VA国家HF仪表盘准确性的逐步过程,包括定义初始仪表盘、改进病例定义、使用自然语言处理进行患者识别以及纳入影像质量层次模型。优化还包括评估是否要求仪表盘纳入并发ICD编码,并评估用于患者特征描述的各种影像模式。
通过多轮优化,射血分数降低的心力衰竭(HFrEF)识别的仪表盘准确性(定义为真实结果占总人口的比例)从54.1%提高到89.2%,射血分数保留的心力衰竭(HFpEF)识别的准确性从53.9%提高到88.0%。为符合当前指南,射血分数轻度降低的心力衰竭(HFmrEF)被添加到仪表盘输出中,准确性为88.0%。
纳入影像质量层次模型和自然语言处理算法提高了VA国家HF仪表盘的准确性。修订后的仪表盘信息学算法在人群健康管理中具有更高的使用率和更高的可靠性。