Suppr超能文献

使用决策树模型预测院外目击心脏骤停且初始可除颤节律患者的院前预测因素。

Prehospital predicting factors using a decision tree model for patients with witnessed out-of-hospital cardiac arrest and an initial shockable rhythm.

机构信息

Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan.

Department of Biostatistics and Data Science, Graduate School of Medicine, Osaka University, Osaka, Japan.

出版信息

Sci Rep. 2023 Sep 27;13(1):16180. doi: 10.1038/s41598-023-43106-w.

Abstract

The effect of prehospital factors on favorable neurological outcomes remains unclear in patients with witnessed out-of-hospital cardiac arrest (OHCA) and a shockable rhythm. We developed a decision tree model for these patients by using prehospital factors. Using a nationwide OHCA registry database between 2005 and 2020, we retrospectively analyzed a cohort of 1,930,273 patients, of whom 86,495 with witnessed OHCA and an initial shockable rhythm were included. The primary endpoint was defined as favorable neurological survival (cerebral performance category score of 1 or 2 at 1 month). A decision tree model was developed from randomly selected 77,845 patients (development cohort) and validated in 8650 patients (validation cohort). In the development cohort, the presence of prehospital return of spontaneous circulation was the best predictor of favorable neurological survival, followed by the absence of adrenaline administration and age. The patients were categorized into 9 groups with probabilities of favorable neurological survival ranging from 5.7 to 70.8% (areas under the receiver operating characteristic curve of 0.851 and 0.844 in the development and validation cohorts, respectively). Our model is potentially helpful in stratifying the probability of favorable neurological survival in patients with witnessed OHCA and an initial shockable rhythm.

摘要

在有目击者的院外心脏骤停(OHCA)和可除颤节律的患者中,院前因素对良好神经功能结局的影响仍不清楚。我们通过使用院前因素为这些患者开发了一个决策树模型。利用 2005 年至 2020 年期间的全国性 OHCA 登记数据库,我们回顾性分析了一个包含 1930273 例患者的队列,其中 86495 例为有目击者的 OHCA 和初始可除颤节律。主要终点定义为良好的神经生存(1 个月时脑功能分类评分 1 或 2)。从随机选择的 77845 例患者(开发队列)中开发了决策树模型,并在 8650 例患者(验证队列)中进行了验证。在开发队列中,院前自主循环恢复的存在是良好神经生存的最佳预测因素,其次是肾上腺素的使用和年龄。患者被分为 9 组,具有良好神经生存的概率从 5.7%到 70.8%(开发和验证队列的接收者操作特征曲线下面积分别为 0.851 和 0.844)。我们的模型有可能有助于分层有目击者的 OHCA 和初始可除颤节律患者的良好神经生存概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b19a/10533815/c9d716339882/41598_2023_43106_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验