Suppr超能文献

mTORC1在心脏再生过程中调控出生后心肌细胞的代谢转换。

mTORC1 regulates the metabolic switch of postnatal cardiomyocytes during regeneration.

作者信息

Paltzer Wyatt G, Aballo Timothy J, Bae Jiyoung, Flynn Corey G K, Wanless Kayla N, Hubert Katharine A, Nuttall Dakota J, Perry Cassidy, Nahlawi Raya, Ge Ying, Mahmoud Ahmed I

机构信息

Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.

Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, United States.

出版信息

J Mol Cell Cardiol. 2024 Feb;187:15-25. doi: 10.1016/j.yjmcc.2023.12.004. Epub 2023 Dec 23.

Abstract

The metabolic switch from glycolysis to fatty acid oxidation in postnatal cardiomyocytes contributes to the loss of the cardiac regenerative potential of the mammalian heart. However, the mechanisms that regulate this metabolic switch remain unclear. The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) is a central signaling hub that regulates cellular metabolism and protein synthesis, yet its role during mammalian heart regeneration and postnatal metabolic maturation is undefined. Here, we use immunoblotting, rapamycin treatment, myocardial infarction, and global proteomics to define the role of mTORC1 in postnatal heart development and regeneration. Our results demonstrate that the activity of mTORC1 is dynamically regulated between the regenerating and the non-regenerating hearts. Acute inhibition of mTORC1 by rapamycin or everolimus reduces cardiomyocyte proliferation and inhibits neonatal heart regeneration following injury. Our quantitative proteomic analysis demonstrates that transient inhibition of mTORC1 during neonatal heart injury did not reduce protein synthesis, but rather shifts the cardiac proteome of the neonatal injured heart from glycolysis towards fatty acid oxidation. This indicates that mTORC1 inhibition following injury accelerates the postnatal metabolic switch, which promotes metabolic maturation and impedes cardiomyocyte proliferation and heart regeneration. Taken together, our results define an important role for mTORC1 in regulating postnatal cardiac metabolism and may represent a novel target to modulate cardiac metabolism and promote heart regeneration.

摘要

出生后心肌细胞从糖酵解到脂肪酸氧化的代谢转换导致哺乳动物心脏丧失心脏再生潜能。然而,调节这种代谢转换的机制仍不清楚。蛋白激酶复合物雷帕霉素机制靶点1(mTORC1)是调节细胞代谢和蛋白质合成的核心信号枢纽,但其在哺乳动物心脏再生和出生后代谢成熟过程中的作用尚不清楚。在这里,我们使用免疫印迹、雷帕霉素治疗、心肌梗死和全局蛋白质组学来确定mTORC1在出生后心脏发育和再生中的作用。我们的结果表明,mTORC1的活性在再生心脏和非再生心脏之间受到动态调节。雷帕霉素或依维莫司对mTORC1的急性抑制会降低心肌细胞增殖,并抑制损伤后的新生心脏再生。我们的定量蛋白质组学分析表明,在新生心脏损伤期间短暂抑制mTORC1并不会降低蛋白质合成,而是会使新生损伤心脏的心脏蛋白质组从糖酵解转向脂肪酸氧化。这表明损伤后mTORC1抑制加速了出生后的代谢转换,促进了代谢成熟,阻碍了心肌细胞增殖和心脏再生。综上所述,我们的结果确定了mTORC1在调节出生后心脏代谢中的重要作用,可能代表了一个调节心脏代谢和促进心脏再生的新靶点。

相似文献

1
mTORC1 regulates the metabolic switch of postnatal cardiomyocytes during regeneration.
J Mol Cell Cardiol. 2024 Feb;187:15-25. doi: 10.1016/j.yjmcc.2023.12.004. Epub 2023 Dec 23.
2
mTORC1 Regulates the Metabolic Switch of Postnatal Cardiomyocytes During Regeneration.
bioRxiv. 2023 Sep 13:2023.09.12.557400. doi: 10.1101/2023.09.12.557400.
5
Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.
Theranostics. 2025 Jan 2;15(4):1524-1551. doi: 10.7150/thno.103797. eCollection 2025.
7
RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19.
Circulation. 2023 Jan 24;147(4):324-337. doi: 10.1161/CIRCULATIONAHA.122.059346. Epub 2022 Oct 31.
9
Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner.
Theranostics. 2019 Jun 9;9(15):4324-4341. doi: 10.7150/thno.32734. eCollection 2019.
10
IL4Rα signaling promotes neonatal cardiac regeneration and cardiomyocyte cell cycle activity.
J Mol Cell Cardiol. 2021 Dec;161:62-74. doi: 10.1016/j.yjmcc.2021.07.012. Epub 2021 Jul 31.

引用本文的文献

1
Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation.
Nat Rev Cardiol. 2025 Apr 7. doi: 10.1038/s41569-025-01145-y.
2
Molecular Regulation of Cardiomyocyte Maturation.
Curr Cardiol Rep. 2025 Jan 21;27(1):32. doi: 10.1007/s11886-024-02189-1.
3
Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.
Theranostics. 2025 Jan 2;15(4):1524-1551. doi: 10.7150/thno.103797. eCollection 2025.
4
tRNA methylation drives early postnatal cardiomyocyte maturation.
Nat Cardiovasc Res. 2024 Dec;3(12):1375-1376. doi: 10.1038/s44161-024-00572-3.
5
Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction.
Int J Mol Sci. 2024 Nov 1;25(21):11747. doi: 10.3390/ijms252111747.

本文引用的文献

1
Integrated proteomics reveals alterations in sarcomere composition and developmental processes during postnatal swine heart development.
J Mol Cell Cardiol. 2023 Mar;176:33-40. doi: 10.1016/j.yjmcc.2023.01.004. Epub 2023 Jan 16.
2
dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts.
Nat Commun. 2022 Jul 8;13(1):3944. doi: 10.1038/s41467-022-31492-0.
3
Amino acid primed mTOR activity is essential for heart regeneration.
iScience. 2021 Dec 6;25(1):103574. doi: 10.1016/j.isci.2021.103574. eCollection 2022 Jan 21.
4
The Role of Metabolism in Heart Failure and Regeneration.
Front Cardiovasc Med. 2021 Jul 16;8:702920. doi: 10.3389/fcvm.2021.702920. eCollection 2021.
5
Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro.
J Proteome Res. 2021 Aug 6;20(8):4203-4211. doi: 10.1021/acs.jproteome.1c00446. Epub 2021 Jul 8.
6
The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
Mol Cell. 2021 Jun 3;81(11):2403-2416.e5. doi: 10.1016/j.molcel.2021.03.031. Epub 2021 Apr 13.
7
Malonate Promotes Adult Cardiomyocyte Proliferation and Heart Regeneration.
Circulation. 2021 May 18;143(20):1973-1986. doi: 10.1161/CIRCULATIONAHA.120.049952. Epub 2021 Mar 5.
8
Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association.
Circulation. 2021 Feb 23;143(8):e254-e743. doi: 10.1161/CIR.0000000000000950. Epub 2021 Jan 27.
9
MTORC1-Regulated Metabolism Controlled by TSC2 Limits Cardiac Reperfusion Injury.
Circ Res. 2021 Mar 5;128(5):639-651. doi: 10.1161/CIRCRESAHA.120.317710. Epub 2021 Jan 6.
10
diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition.
Nat Methods. 2020 Dec;17(12):1229-1236. doi: 10.1038/s41592-020-00998-0. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验