Walter Florian, Röhrbein Florian, Knoll Alois
Institut für Informatik VI, Technische Universität München, Boltzmannstraße 3, 85748 Garching bei München, Germany.
Neural Netw. 2015 Dec;72:152-67. doi: 10.1016/j.neunet.2015.07.004. Epub 2015 Aug 18.
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks.
在机器人技术领域,将受生物启发的方法应用于设计和控制有着悠久的传统。与以往在这个方向上的方法不同,新兴的神经机器人学领域不仅在相对较高的抽象层面上模仿生物机制,还采用了对实际生物神经系统的高度逼真模拟。即便在今天,要在适当的时间尺度上高效地进行这些模拟仍具有挑战性。因此,专门为这项任务量身定制的神经形态芯片设计为神经机器人学提供了一个有趣的视角。与冯·诺依曼CPU不同,这些芯片不能简单地用标准编程语言进行编程。与真实大脑一样,它们的功能由神经连接结构和突触效能决定。因此,要为神经机器人学实现更高的认知功能,就需要应用神经生物学学习算法,以生物学上合理的方式调整突触权重。在本文中,我们因此研究如何通过学习对神经形态芯片进行编程。首先,我们对选定的神经形态芯片设计进行概述,并从神经计算、通信系统和软件基础设施方面对它们进行分析。在理论方面,我们回顾神经生物学学习技术。基于这一概述,我们接着研究这些学习算法在考虑的神经形态芯片上的片上实现。最后的讨论将这项工作的发现置于背景中,并强调神经形态硬件如何有可能推动自主机器人系统领域的发展。本文因此深入概述了突触可塑性基本机制的神经形态实现,这些机制是用脉冲神经网络实现高级认知能力所必需的。