Suppr超能文献

用于机器人视觉的神经形态计算:从算法到硬件的进展

Neuromorphic computing for robotic vision: algorithms to hardware advances.

作者信息

Chowdhury Sayeed Shafayet, Sharma Deepika, Kosta Adarsh, Roy Kaushik

机构信息

Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Commun Eng. 2025 Aug 13;4(1):152. doi: 10.1038/s44172-025-00492-5.

Abstract

Neuromorphic computing offers transformative potential for AI in resource-constrained environments by mimicking biological neural efficiency. This perspective article analyzes recent advances and future directions, advocating a system design approach that integrates specialized sensing (e.g., event-based cameras), brain-inspired algorithms (SNNs and SNN-ANN hybrids), and dedicated neuromorphic hardware. Using vision-based drone navigation (VDN) as an exemplar-drawing parallels with biological systems like Drosophila-we demonstrate how these components enable event-driven processing and overcome von Neumann architecture limitations through near-/in-memory computing. Key challenges include large-scale integration, benchmarking standardization, and algorithm-hardware co-design for emerging applications, which we discuss alongside current and future research directions.

摘要

神经形态计算通过模仿生物神经的高效性,为资源受限环境中的人工智能提供了变革性潜力。这篇观点文章分析了近期的进展和未来方向,倡导一种集成了专门传感(如基于事件的相机)、受大脑启发的算法(脉冲神经网络和脉冲神经网络-人工神经网络混合体)以及专用神经形态硬件的系统设计方法。以基于视觉的无人机导航(VDN)为例——将其与果蝇等生物系统进行类比——我们展示了这些组件如何实现事件驱动处理,并通过近内存/内存内计算克服冯·诺依曼架构的局限性。关键挑战包括大规模集成、基准测试标准化以及针对新兴应用的算法-硬件协同设计,我们将在讨论当前和未来研究方向的同时探讨这些挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c99/12350809/7c48c14f7245/44172_2025_492_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验