Suppr超能文献

超越神经形态硬件上的LIF神经元。

Beyond LIF Neurons on Neuromorphic Hardware.

作者信息

Ward Mollie, Rhodes Oliver

机构信息

Department of Computer Science, University of Manchester, Manchester, United Kingdom.

出版信息

Front Neurosci. 2022 Jul 5;16:881598. doi: 10.3389/fnins.2022.881598. eCollection 2022.

Abstract

Neuromorphic systems aim to provide accelerated low-power simulation of Spiking Neural Networks (SNNs), typically featuring simple and efficient neuron models such as the Leaky Integrate-and-Fire (LIF) model. Biologically plausible neuron models developed by neuroscientists are largely ignored in neuromorphic computing due to their increased computational costs. This work bridges this gap through implementation and evaluation of a single compartment Hodgkin-Huxley (HH) neuron and a multi-compartment neuron incorporating dendritic computation on the SpiNNaker, and SpiNNaker2 prototype neuromorphic systems. Numerical accuracy of the model implementations is benchmarked against reference models in the NEURON simulation environment, with excellent agreement achieved by both the fixed- and floating-point SpiNNaker implementations. The computational cost is evaluated in terms of timing measurements profiling neural state updates. While the additional model complexity understandably increases computation times relative to LIF models, it was found a wallclock time increase of only 8× was observed for the HH neuron (11× for the mutlicompartment model), demonstrating the potential of hardware accelerators in the next-generation neuromorphic system to optimize implementation of complex neuron models. The benefits of models directly corresponding to biophysiological data are demonstrated: HH neurons are able to express a range of output behaviors not captured by LIF neurons; and the dendritic compartment provides the first implementation of a spiking multi-compartment neuron model with XOR-solving capabilities on neuromorphic hardware. The work paves the way for inclusion of more biologically representative neuron models in neuromorphic systems, and showcases the benefits of hardware accelerators included in the next-generation SpiNNaker2 architecture.

摘要

神经形态系统旨在提供对脉冲神经网络(SNN)的加速低功耗模拟,通常具有简单高效的神经元模型,如泄漏积分发放(LIF)模型。由于计算成本增加,神经科学家开发的具有生物学合理性的神经元模型在神经形态计算中大多被忽视。这项工作通过在SpiNNaker和SpiNNaker2原型神经形态系统上实现并评估单室霍奇金-赫胥黎(HH)神经元和包含树突计算的多室神经元,弥合了这一差距。模型实现的数值精度以NEURON模拟环境中的参考模型为基准,定点和浮点SpiNNaker实现均取得了极佳的一致性。计算成本根据神经状态更新的计时测量进行评估。虽然额外的模型复杂性导致相对于LIF模型的计算时间增加是可以理解的,但发现HH神经元的挂钟时间仅增加了8倍(多室模型为11倍),这表明下一代神经形态系统中的硬件加速器在优化复杂神经元模型实现方面的潜力。证明了直接对应生物生理数据的模型的优势:HH神经元能够表达一系列LIF神经元无法捕捉的输出行为;树突室首次在神经形态硬件上实现了具有异或求解能力的脉冲多室神经元模型。这项工作为在神经形态系统中纳入更具生物学代表性的神经元模型铺平了道路,并展示了下一代SpiNNaker2架构中包含的硬件加速器的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3849/9294628/b451cf973009/fnins-16-881598-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验