Farzana Walia, Basree Mustafa M, Diawara Norou, Shboul Zeina A, Dubey Sagel, Lockhart Marie M, Hamza Mohamed, Palmer Joshua D, Iftekharuddin Khan M
Vision Lab, Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA.
Department of Internal Medicine, OhioHealth Riverside Methodist Hospital, Columbus, OH 43214, USA.
Cancers (Basel). 2023 Sep 19;15(18):4636. doi: 10.3390/cancers15184636.
Recent clinical research describes a subset of glioblastoma patients that exhibit REP prior to the start of radiation therapy. Current literature has thus far described this population using clinicopathologic features. To our knowledge, this study is the first to investigate the potential of conventional radiomics, sophisticated multi-resolution fractal texture features, and different molecular features (MGMT, IDH mutations) as a diagnostic and prognostic tool for prediction of REP from non-REP cases using computational and statistical modeling methods. The radiation-planning T1 post-contrast (T1C) MRI sequences of 70 patients are analyzed. An ensemble method with 5-fold cross-validation over 1000 iterations offers an AUC of 0.793 ± 0.082 for REP versus non-REP classification. In addition, copula-based modeling under dependent censoring (where a subset of the patients may not be followed up with until death) identifies significant features (-value < 0.05) for survival probability and prognostic grouping of patient cases. The prediction of survival for the patients' cohort produces a precision of 0.881 ± 0.056. The prognostic index (PI) calculated using the fused features shows that 84.62% of REP cases fall under the bad prognostic group, suggesting the potential of fused features for predicting a higher percentage of REP cases. The experimental results further show that multi-resolution fractal texture features perform better than conventional radiomics features for prediction of REP and survival outcomes.
最近的临床研究描述了一部分在放射治疗开始前就表现出放射性脑坏死(REP)的胶质母细胞瘤患者。目前的文献迄今为止是使用临床病理特征来描述这一人群的。据我们所知,本研究首次调查了传统放射组学、复杂的多分辨率分形纹理特征以及不同分子特征(MGMT、异柠檬酸脱氢酶(IDH)突变)作为一种诊断和预后工具,通过计算和统计建模方法从非REP病例中预测REP的潜力。分析了70名患者的放射治疗计划对比增强T1加权(T1C)磁共振成像(MRI)序列。一种在1000次迭代中进行5折交叉验证的集成方法在REP与非REP分类方面的曲线下面积(AUC)为0.793±0.082。此外,基于copula的依赖删失建模(其中一部分患者可能直到死亡才进行随访)确定了患者生存概率和预后分组的显著特征(p值<0.05)。对患者队列的生存预测产生的精度为0.881±0.056。使用融合特征计算的预后指数(PI)表明,84.62%的REP病例属于不良预后组,这表明融合特征在预测更高比例的REP病例方面具有潜力。实验结果进一步表明,多分辨率分形纹理特征在预测REP和生存结果方面比传统放射组学特征表现更好。