Hong Yiqiang, Zhu Yu, Du Youpei, Che Zhe, Qu Guoxin, Li Qiaosheng, Yuan Tingting, Yang Wei, Dai Zhen, Han Weijian, Ma Qingsong
Science and Technology on Advanced Ceramic Fibers & Composites Laboratory, College of Aerospace Science, National University of Defense Technology, Changsha 410073, China.
Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China.
Materials (Basel). 2023 Sep 5;16(18):6082. doi: 10.3390/ma16186082.
Molecular simulations are currently receiving significant attention for their ability to offer a microscopic perspective that explains macroscopic phenomena. An essential aspect is the accurate characterization of molecular structural parameters and the development of realistic numerical models. This study investigates the surface morphology and elemental distribution of silicon nitride fibers through TEM and EDS, and SEM and EDS analyses. Utilizing a customized molecular dynamics approach, molecular models of amorphous and multi-interface silicon nitride fibers with complex structures were constructed. Tensile simulations were conducted to explore correlations between performance and molecular structural composition. The results demonstrate successful construction of molecular models with amorphous, amorphous-crystalline interface, and mixed crystalline structures. Mechanical property characterization reveal the following findings: (1) The nonuniform and irregular amorphous structure causes stress concentration and crack formation under applied stress. Increased density enhances material strength but leads to higher crack sensitivity. (2) Incorporating a crystalline reinforcement phase without interfacial crosslinking increases free volume and relative tensile strength, improving toughness and reducing crack susceptibility. (3) Crosslinked interfaces effectively enhance load transfer in transitional regions, strengthening the material's tensile strength, while increased density simultaneously reduces crack propagation.
分子模拟目前因其能够提供微观视角来解释宏观现象而受到广泛关注。一个重要方面是分子结构参数的准确表征以及现实数值模型的开发。本研究通过透射电子显微镜(TEM)和能谱仪(EDS)分析以及扫描电子显微镜(SEM)和EDS分析,研究了氮化硅纤维的表面形态和元素分布。利用定制的分子动力学方法,构建了具有复杂结构的非晶态和多界面氮化硅纤维的分子模型。进行拉伸模拟以探索性能与分子结构组成之间的相关性。结果表明成功构建了具有非晶态、非晶 - 晶体界面和混合晶体结构的分子模型。力学性能表征揭示了以下发现:(1)不均匀且不规则的非晶结构在施加应力时会导致应力集中和裂纹形成。密度增加会提高材料强度,但会导致更高的裂纹敏感性。(2)引入无界面交联的晶体增强相可增加自由体积和相对拉伸强度,提高韧性并降低裂纹敏感性。(3)交联界面有效地增强了过渡区域的载荷传递,增强了材料的拉伸强度,同时密度增加会减少裂纹扩展。