Suppr超能文献

基于贝塞尔光束、超短双脉冲激光和选择性化学蚀刻的玻璃通孔(TGV)研究

Study of Through Glass Via (TGV) Using Bessel Beam, Ultrashort Two-Pulses of Laser and Selective Chemical Etching.

作者信息

Kim Jonghyeok, Kim Sungil, Kim Byungjoo, Choi Jiyeon, Ahn Sanghoon

机构信息

Department of Laser & Electron Beam Technologies, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea.

Department of Mechanical Engineering (Robot∙Manufacturing Systems), University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea.

出版信息

Micromachines (Basel). 2023 Sep 14;14(9):1766. doi: 10.3390/mi14091766.

Abstract

Selective laser etching is a promising candidate for the mass production of glass interposers. It comprises two steps: local modification by an ultrashort-pulsed laser and chemical etching of the modified volume. According to previous studies, when an ultrashort-pulsed laser beam is irradiated on the sample, electron excitation occurs, followed by phonon vibration. In general, the electron excitation occurs for less than a few tens of picoseconds and phonon vibration occurs for more than 100 picoseconds. Thus, in order to compare the electric absorption and thermal absorption of photons in the commercial glass, we attempt to implement an additional laser pulse of 213 ps and 10 ns after the first pulse. The modified glass sample is etched with 8 mol/L KOH solution with 110 °C to verify the effect. Here, we found that the electric absorption of photons is more effective than the thermal absorption of them. We can claim that this result helps to enhance the process speed of TGV generation.

摘要

选择性激光蚀刻是大规模生产玻璃中介层的一个有前景的候选方法。它包括两个步骤:用超短脉冲激光进行局部改性以及对改性区域进行化学蚀刻。根据先前的研究,当超短脉冲激光束照射到样品上时,会发生电子激发,随后是声子振动。一般来说,电子激发发生的时间不到几十皮秒,而声子振动发生的时间超过100皮秒。因此,为了比较商用玻璃中光子的电吸收和热吸收,我们尝试在第一个脉冲之后施加一个213皮秒和一个10纳秒的额外激光脉冲。用8摩尔/升的KOH溶液在110℃下蚀刻改性后的玻璃样品以验证效果。在此,我们发现光子的电吸收比热吸收更有效。我们可以声称这一结果有助于提高玻璃通孔(TGV)生成的工艺速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825e/10536211/0ab389579e5f/micromachines-14-01766-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验