Ismail Muhammad, Mahata Chandreswar, Kang Myounggon, Kim Sungjun
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
Department of Electronics Engineering, Korea National University of Transportation, Chungju-si 27469, Republic of Korea.
Nanomaterials (Basel). 2023 Sep 21;13(18):2603. doi: 10.3390/nano13182603.
In this study, we fabricate a Pt/TiN/SnO/Pt memory device using reactive sputtering to explore its potential for neuromorphic computing. The TiON interface layer, formed when TiN comes into contact with SnO, acts as an oxygen vacancy reservoir, aiding the creation of conductive filaments in the switching layer. Our SnO-based device exhibits remarkable endurance, with over 200 DC cycles, ON/FFO ratio (>20), and 10 s retention. Set and reset voltage variabilities are impressively low, at 9.89% and 3.2%, respectively. Controlled negative reset voltage and compliance current yield reliable multilevel resistance states, mimicking synaptic behaviors. The memory device faithfully emulates key neuromorphic characteristics, encompassing both long-term potentiation (LTP) and long-term depression (LTD). The filamentary switching mechanism in the SnO-based memory device is explained by an oxygen vacancy concentration gradient, where current transport shifts from Ohmic to Schottky emission dominance across different resistance states. These findings exemplify the potential of SnO-based devices for high-density data storage memory and revolutionary neuromorphic computing applications.
在本研究中,我们使用反应溅射制备了一种Pt/TiN/SnO/Pt存储器件,以探索其在神经形态计算方面的潜力。TiN与SnO接触时形成的TiON界面层充当氧空位储存库,有助于在开关层中形成导电细丝。我们基于SnO的器件表现出卓越的耐久性,具有超过200次直流循环、开/关比(>20)和10秒的保持时间。设置和重置电压的变化率极低,分别为9.89%和3.2%。可控的负重置电压和顺从电流产生可靠的多级电阻状态,模仿突触行为。该存储器件忠实地模拟了关键的神经形态特征,包括长时程增强(LTP)和长时程抑制(LTD)。基于SnO的存储器件中的丝状开关机制由氧空位浓度梯度解释,其中电流传输在不同电阻状态下从欧姆发射主导转变为肖特基发射主导。这些发现例证了基于SnO的器件在高密度数据存储记忆和革命性神经形态计算应用方面的潜力。