Prasanna Christopher, Realmuto Jonathan, Anderson Anthony, Rombokas Eric, Klute Glenn
Center for Limb Loss and Mobility, Seattle, WA 98108, USA.
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
Sensors (Basel). 2023 Sep 6;23(18):7712. doi: 10.3390/s23187712.
Inverse dynamics from motion capture is the most common technique for acquiring biomechanical kinetic data. However, this method is time-intensive, limited to a gait laboratory setting, and requires a large array of reflective markers to be attached to the body. A practical alternative must be developed to provide biomechanical information to high-bandwidth prosthesis control systems to enable predictive controllers. In this study, we applied deep learning to build dynamical system models capable of accurately estimating and predicting prosthetic ankle torque from inverse dynamics using only six input signals. We performed a hyperparameter optimization protocol that automatically selected the model architectures and learning parameters that resulted in the most accurate predictions. We show that the trained deep neural networks predict ankle torques one sample into the future with an average RMSE of 0.04 ± 0.02 Nm/kg, corresponding to 2.9 ± 1.6% of the ankle torque's dynamic range. Comparatively, a manually derived analytical regression model predicted ankle torques with a RMSE of 0.35 ± 0.53 Nm/kg, corresponding to 26.6 ± 40.9% of the ankle torque's dynamic range. In addition, the deep neural networks predicted ankle torque values half a gait cycle into the future with an average decrease in performance of 1.7% of the ankle torque's dynamic range when compared to the one-sample-ahead prediction. This application of deep learning provides an avenue towards the development of predictive control systems for powered limbs aimed at optimizing prosthetic ankle torque.
基于动作捕捉的逆动力学是获取生物力学动力学数据最常用的技术。然而,这种方法耗时较长,仅限于步态实验室环境,并且需要在身体上附着大量反光标记。必须开发一种实用的替代方法,以便为高带宽假肢控制系统提供生物力学信息,从而实现预测控制器。在本研究中,我们应用深度学习来构建动力学系统模型,该模型仅使用六个输入信号就能根据逆动力学准确估计和预测假肢踝关节扭矩。我们执行了一个超参数优化协议,自动选择能产生最准确预测结果的模型架构和学习参数。我们表明,经过训练的深度神经网络能够预测未来一个样本的踝关节扭矩,平均均方根误差为0.04±0.02 Nm/kg,相当于踝关节扭矩动态范围的2.9±1.6%。相比之下,一个手动推导的解析回归模型预测踝关节扭矩的均方根误差为0.35±0.53 Nm/kg,相当于踝关节扭矩动态范围的26.6±40.9%。此外,与提前一个样本的预测相比,深度神经网络预测未来半个步态周期的踝关节扭矩值时,性能平均下降了踝关节扭矩动态范围的1.7%。深度学习的这种应用为开发旨在优化假肢踝关节扭矩的动力肢体预测控制系统提供了一条途径。